Tag Archives: cable machine

China Hot selling WEJION cable wire cutting and stripping machine for new energy electric car near me manufacturer

Product Description

Product Description

CS-B150 Cable Cutting&Stripping Machine(6-150mm²)

Product Parameters

Model CS-B35 CS-B70 CS-B150
Wire range 1.5-35mm² 4.0-70mm² 6-150 mm²
Cutting Length 0-100m 0-100m 60-99999.99mm
Stripping Length Head 0-250mm; Tail 0-120mm Head 0-300mm; Tail 0-150mm Head 0-500mm; Tail 0-250mm
Conduit Diameter ø16mm Φ20mm Φ28mm
Drive Method 8wheels drive 12wheels drive 14 wheels drive
power 650W 800W 1500W
Wire types Multi – strand copper wire, coaxial cable, sheath wire, etc
Blade material Imported high speed steel
Production Rate 1500-2500pcs/h
Display Screen 7 inch touch screen
Wire Feed Method Belt feeding wire, no indentation on cable
Memory function Up to 100 groups of programs can be stored Up to 200 groups of programs can be stored
Weight 70KG 80KG 270KG
Dimensions 560*520*450mm 700*640*480mm 1180*650*1200mm

CS-B150 Festures:

Large cable computer wire stripping machine(fully electric, without air source)  

1.the machine adopts 12 wheel drive, strong power, high precision, belt feeding system can ensure no damage on the surface of wire, widely used in product power cable, sheath line, hard and soft line processing.  

2.The pressing force of the inlet wheel and outlet wheel can be set directly in the program without manual adjustment of the pressure of the wheel.  The outlet wheel also has the function of automatic lifting wheel. When the wire head is peeled, the outlet wheel can be automatically lifted up to avoid interference, thus greatly increasing the stripping length range of the wire head. The height of the outlet wheel can also be set directly in the program.  

3.color touch screen operation interface, all parameters are intuitive and easy to understand, only simple training can quickly operate the machine;  The machine also has 3 layers of stripping procedures, can be divided into 3 layers of peeling, or when the peeling length is long, at most 3 times of peeling;  Provide 100 groups of program memory function, can store different wire processing parameters in different program numbers.  

4.can be added to divide the mold, cutting mold, inkjet machine.  

 

Certifications

 

Packaging & Shipping

Packaging:
 Samll size machines:  Standard carton
 Medium size machines: Thickened cartons and wooden pallets
 Big size machine: Plywood wooden cases

Shipping:
A. 3-5 workdays shipping from China by Air/Express(DHL,FedEx,UPS,EMS etc.)
B. 25-30 workdays shipping from China to Europe by train. 
C. We can arrange shipment by sea. Minium CBM requirement : 1 CBM 

Company Profile

HangZhou Weijiang Automation Equipment Co., Ltd  is a modern technology enterprise specializing in processing and cutting, R&D of harness equipments.Our machines are exported to over 20 countries and Our equipments are widely used in various industries at home and abroad, such as photovoltaic, new energy vehicles, home appliances,industrial equipment, rail transit, communications and other industries.

Our main products are :Wire tape winding machine weries,Wire cutting stripping machine series,Wire terminal lug crimping machine series,Pipe cutting machine series.In addition,our factory accept the R&D and production of non-standard automation equipments.Choose Weijiang,win the future,welcome to consult us!

Our Advantages

We are 1 of the most professional Chinese wire cable process machine manufacturers and leaders.

* Best products and factory price.
* On-time delivery and the shortest delivery time.
* 1year warranty. If our products cannot function properly within 12 months, we’ll offer spare parts for free; and you need to pay for the delivery.
OEM and customized service.
* User manuals will go with relative machines.

QC: All products will be checked before delivery.
Compensation: If any unqualified product is found, we’ll pay the compensation or send new qualified products to customers.
Maintenance & Repair: In case of any maintenance or repair need, we’ll help to find out the problem and offer relative guidance.
Operation Guidance: If you have any problem with operation, please feel free to contact us.

FAQ

1. Why choose us?
We provide overall solutions for processing equipment. Our standard equipment is very complete, all are in stock and can be shipped quickly. We have our own equipment factory, which can lightly customize equipment according to customer requirements, such as ordering different appearances and brands for agents, and non-standard equipment according to customer requirements.

2. Should I worry about the quality?
Before delivery, we do test the machine working condition for you.
Take a video of the normal operation of the machine to you, and then confirm the delivery

3.How can I know your machine is designed for my product?
You tell us the specific parameters of your product, or you can send us samples of your product and we test it on machine.
Video for you to make samples

4. How to operate the equipment?
My friend, don’t worry about it, we have made vedio for you, it will show you how to do it step by step. Contact our engineers at any time when you don’t understand, support video and telephone communication

5.When the machine can’t work well,What should I do?
The Engineer is online for 24-hours, they can check the problems and then give you solution way very soon. Please rest assured that manual will be offered along with machine,ensuring you can operate the machine easily.

Screw Sizes and Their Uses

Screws have different sizes and features. This article will discuss screw sizes and their uses. There are 2 main types: right-handed and left-handed screw shafts. Each screw features a point that drills into the object. Flat tipped screws, on the other hand, need a pre-drilled hole. These screw sizes are determined by the major and minor diameters. To determine which size of screw you need, measure the diameter of the hole and the screw bolt’s thread depth.

The major diameter of a screw shaft

The major diameter of a screw shaft is the distance from the outer edge of the thread on 1 side to the tip of the other. The minor diameter is the inner smooth part of the screw shaft. The major diameter of a screw is typically between 2 and 16 inches. A screw with a pointy tip has a smaller major diameter than 1 without. In addition, a screw with a larger major diameter will have a wider head and drive.
The thread of a screw is usually characterized by its pitch and angle of engagement. The pitch is the angle formed by the helix of a thread, while the crest forms the surface of the thread corresponding to the major diameter of the screw. The pitch angle is the angle between the gear axis and the pitch surface. Screws without self-locking threads have multiple starts, or helical threads.
The pitch is a crucial component of a screw’s threading system. Pitch is the distance from a given thread point to the corresponding point of the next thread on the same shaft. The pitch line is 1 element of pitch diameter. The pitch line, or lead, is a crucial dimension for the thread of a screw, as it controls the amount of thread that will advance during a single turn.
screwshaft

The pitch diameter of a screw shaft

When choosing the appropriate screw, it is important to know its pitch diameter and pitch line. The pitch line designates the distance between adjacent thread sides. The pitch diameter is also known as the mean area of the screw shaft. Both of these dimensions are important when choosing the correct screw. A screw with a pitch of 1/8 will have a mechanical advantage of 6.3. For more information, consult an application engineer at Roton.
The pitch diameter of a screw shaft is measured as the distance between the crest and the root of the thread. Threads that are too long or too short will not fit together in an assembly. To measure pitch, use a measuring tool with a metric scale. If the pitch is too small, it will cause the screw to loosen or get stuck. Increasing the pitch will prevent this problem. As a result, screw diameter is critical.
The pitch diameter of a screw shaft is measured from the crest of 1 thread to the corresponding point on the next thread. Measurement is made from 1 thread to another, which is then measured using the pitch. Alternatively, the pitch diameter can be approximated by averaging the major and minor diameters. In most cases, the pitch diameter of a screw shaft is equal to the difference between the two.

The thread depth of a screw shaft

Often referred to as the major diameter, the thread depth is the outermost diameter of the screw. To measure the thread depth of a screw, use a steel rule, micrometer, or caliper. In general, the first number in the thread designation indicates the major diameter of the thread. If a section of the screw is worn, the thread depth will be smaller, and vice versa. Therefore, it is good practice to measure the section of the screw that receives the least amount of use.
In screw manufacturing, the thread depth is measured from the crest of the screw to the root. The pitch diameter is halfway between the major and minor diameters. The lead diameter represents the amount of linear distance traveled in 1 revolution. As the lead increases, the load capacity decreases. This measurement is primarily used in the construction of screws. However, it should not be used for precision machines. The thread depth of a screw shaft is essential for achieving accurate screw installation.
To measure the thread depth of a screw shaft, the manufacturer must first determine how much material the thread is exposed to. If the thread is exposed to side loads, it can cause the nut to wedge. Because the nut will be side loaded, its thread flanks will contact the nut. The less clearance between the nut and the screw, the lower the clearance between the nut and the screw. However, if the thread is centralized, there is no risk of the nut wedgeing.
screwshaft

The lead of a screw shaft

Pitch and lead are 2 measurements of a screw’s linear distance per turn. They’re often used interchangeably, but their definitions are not the same. The difference between them lies in the axial distance between adjacent threads. For single-start screws, the pitch is equal to the lead, while the lead of a multi-start screw is greater than the pitch. This difference is often referred to as backlash.
There are 2 ways to calculate the pitch and lead of a screw. For single-start screws, the lead and pitch are equal. Multiple-start screws, on the other hand, have multiple starts. The pitch of a multiple-start screw is the same as its lead, but with 2 or more threads running the length of the screw shaft. A square-thread screw is a better choice in applications requiring high load-bearing capacity and minimal friction losses.
The PV curve defines the safe operating limits of lead screw assemblies. It describes the inverse relationship between contact surface pressure and sliding velocity. As the load increases, the lead screw assembly must slow down in order to prevent irreversible damage from frictional heat. Furthermore, a lead screw assembly with a polymer nut must reduce rpm as the load increases. The more speed, the lower the load capacity. But, the PV factor must be below the maximum allowed value of the material used to make the screw shaft.

The thread angle of a screw shaft

The angle between the axes of a thread and the helix of a thread is called the thread angle. A unified thread has a 60-degree angle in all directions. Screws can have either a tapped hole or a captive screw. The screw pitch is measured in millimeters (mm) and is usually equal to the screw major diameter. In most cases, the thread angle will be equal to 60-degrees.
Screws with different angles have various degrees of thread. Originally, this was a problem because of the inconsistency in the threading. However, Sellers’s thread was easier to manufacture and was soon adopted as a standard throughout the United States. The United States government began to adopt this thread standard in the mid-1800s, and several influential corporations in the railroad industry endorsed it. The resulting standard is called the United States Standard thread, and it became part of the ASA’s Vol. 1 publication.
There are 2 types of screw threads: coarse and fine. The latter is easier to tighten and achieves tension at lower torques. On the other hand, the coarse thread is deeper than the fine one, making it easier to apply torque to the screw. The thread angle of a screw shaft will vary from bolt to bolt, but they will both fit in the same screw. This makes it easier to select the correct screw.
screwshaft

The tapped hole (or nut) into which the screw fits

A screw can be re-threaded without having to replace it altogether. The process is different than that of a standard bolt, because it requires threading and tapping. The size of a screw is typically specified by its major and minor diameters, which is the inside distance between threads. The thread pitch, which is the distance between each thread, is also specified. Thread pitch is often expressed in threads per inch.
Screws and bolts have different thread pitches. A coarse thread has fewer threads per inch and a longer distance between threads. It is therefore larger in diameter and longer than the material it is screwed into. A coarse thread is often designated with an “A” or “B” letter. The latter is generally used in smaller-scale metalworking applications. The class of threading is called a “threaded hole” and is designated by a letter.
A tapped hole is often a complication. There is a wide range of variations between the sizes of threaded holes and nut threads, so the tapped hole is a critical dimension in many applications. However, even if you choose a threaded screw that meets the requisite tolerance, there may be a mismatch in the thread pitch. This can prevent the screw from freely rotating.

China Hot selling WEJION cable wire cutting and stripping machine for new energy electric car   near me manufacturer China Hot selling WEJION cable wire cutting and stripping machine for new energy electric car   near me manufacturer

China Professional Wire and Cable Coiling Machine wholesaler

Product Description

Wire And Cable Coiling Machine

New design

1. Type: manually-operated replaceable take-up machine, for shaft-amounted or in-bundle purpose.
2. Applicable shaft diameter: PD500-630
3. Shaft assembling and disassembling: manually operated
4. Drive motor: 3HP Siemens motor for driving, and YASKAWA converter for speed regulating
5. Meter counter: 6-digit, double setting; reduce speed when a warning is forecasted; automatically stop when the specific meter is reached.
6. Traversing: a 30 rolling rings traverse drive is applied for traversing, with both the pitch and amplitude being adjustable.
7. Being controlled in linkage with the storage later stand; automatic looping; non-stop when replacing the tray

Professional and Strong Manufacture and Sales Team
 

Team of CZPT service
Name education Position Mainly responsible for project Specializing in project  Industry working experience  ( year )
zHangZhou Xie college General Engineer The total project design and plHangZhou  power cable machine 15
xioahua Hu college Vis general engineer The total project design and plHangZhou  net cable,data cable machine 10
Chnaghong Cheng college Engineer Drawings and after-sales service Teflon,Optical fiber cable machine 25
xiuwu Chen college General Engineer The total project design and plHangZhou  copper drawing machine 15
lixin Yuan college Engineer The project design and plHangZhou  coppwer wire making technical 16
zhenghai Qiu college cable engineer After service cable making and cable factory management servie 15
jinxin Liu college Marketing engineer After service electrical engineer 7
xingguo Tang High school Electrical engineer After service electrical engineer 10
changqiang Li High school Maintain engineer After service machina maintain and install service 10
haipin Li University Engineering director  Marketing and sales project consulting  8
sen Yang University Engineering translator Marketing and sales project consulting  5

Location

Hongkong airport to Humen by boat 2 hours
HangZhou airport to Humen by car 2 hours
HangZhou airport to Humen by car 1 hour
HangZhou South high speed train station to Humen 20 minutes
HangZhou North high speed train station to Humen 20 minutes

We have provided professional wire and cable solution for more than 100 customers around the world. The main markets are as follow

1.Southeast Asia(eg:Indonesian customer Pt sinarmonas industries)
2.South Asia(eg:Indian customer ESSEM Srinisons Systems Pvt Ltd.)
3.East Asia(eg:Japanese customer KDK Electric wire Co.,Ltd.)
4.North America(eg:American customer General technologies, Inc.)
5.South America (eg:Brazilian customer Fibracem Teleinformatica Ltda)
6.Eastern Europe(eg:Ukrainian customer Deep Networks Group)
7.Africa(eg:Angola customer W-VOA-fabrica de cabos de angola,lda.)
8.The Middle East(eg:Dubai customers Power Plus Cable Co., L.L.C.), etc.

FAQ:

Q1:What is your main brand for the electrical and mechanical parts?
A:China famous brand and ZheJiang brand.

Q2:Could we appoint the parts brand?
A: Yes,SIEMENS, Danfoss,Yaskawa, or theirs that you like

Q3:Could you please arrange the installation and commissioning?
A: Yes,we could and the buyer pay the charge

Q4:Could you arrange the production education?
A:Yes,we could and the buyer pay the charge

Q5:Could you do the design for the whole plant
A: Yes , we can

Q6:What is the difference with other supplier?
A:What we could offer to other customer is not only the machine itself, also we could offer: factory design, production process design , QC control and education and assist machine and raw material offering .

Q7:What’s the payment terms?
A:T/T,30% deposit and 70% balance before delivery.

Q8:How long the guarantee ?
A: 1 year and charge for repair the whole life.

Q9: Do you have a video tips for the machine running ?
A. Yes , we have,our youtube channel : tiezhong chi /HOOHA WIRE MACHINE
 

Screw Shaft Types

If you’re looking for a screw shaft, but aren’t sure which type to buy, you’re in luck. In this article, we’ll talk about the different types, including Threaded shank, Round head, and Machined. Once you’ve read it, you’ll know which type to buy. Then, you can decide whether you want a ball screw nut or a threaded shank.

Machined screw shafts

Besides the standard stainless steel shaft, manufacturers also provide a variety of other materials, such as titanium, bronze, and brass. In addition to stainless steel, manufacturers also provide a variety of top-coating options, including zinc, brass, and chromium. Aluminum screws are not particularly durable and are easily affected by weather. Most screw shafts feature self-locking mechanisms. They are especially useful in C-clamps, vises, and screw-top container lids.
For applications where accuracy is vital, a ball screw shaft needs to be annealed. A heat treatment can be performed on the ball screw shaft to ensure that both ends are heated evenly. In this process, the shaft will be more durable, while maintaining its high-precision properties. These screw shafts are a key component in computer-controlled motion-control systems, wire bonding, and other industries that require high-precision and high-quality performance.
Depending on the material used, screw shafts can be made of stainless steel or titanium. High-precision CNC machines and lathes are typically used to manufacture screw shafts. Various shapes and sizes are available, each with a specific application. Whether you need a small or large screw, you can find 1 to fit your needs. And since each size requires a different material, your choice of material is important as well.
In general, the materials used for machining screw shafts are steel, stainless steel, titanium, brass, bronze, and aluminum. Metals that resist corrosion are also commonly used. Other materials for screw shafts are Teflon, nylon, and nylon. You can also find threaded screw shafts in materials such as porcelain, glass, and ceramic. If you want to use your screws in a unique material, consider purchasing a customized one.
screwshaft

Ball screw nuts

If you have a screw shaft, the last thing you want to worry about is the ball nut slipping off. To prevent this, you can place a temporary stop in the shaft’s grooves to ensure that the ball nut does not slide off. When you remove the stop, you can then install the ball screw nut. But, before you can install the ball screw nut, you have to make sure that you have a good grip on the shaft.
When selecting ball screw nuts, it’s important to consider how much preload you need to apply to avoid excessive backlash. Preloading eliminates this problem by making the ball nut compact. It also prevents backlash, which is lost motion caused by clearance between the ball and nut. Backlash disrupts repeatability and accuracy. This is where spacer preloading comes in. You can insert a spacer between the 2 ball nuts to transmit the force to the nut. However, you should keep in mind that this method reduces the load capacity of the ball screw.
The critical speed of a screw is the maximum rotating speed before it whips. This critical speed is influenced by several factors, including the diameter of the screw shaft, the number of support elements, and the material. By adjusting these factors, you can reduce the number of components used and the amount of time it takes to assemble the screw shaft. In addition, you can also reduce the number of components and avoid stacking tolerances. However, the critical speed of plastic nuts is limited due to sliding friction.
The ball screw nut has several characteristics that make it unique. Its most prominent feature is the presence of ball bearings. These balls help reduce friction between the screw nut and the shaft. Without ball bearings, the friction would be too high to function properly. Another important characteristic is the groove profile of the nut and ball. These 2 features ensure that the ball and the nut meet at 2 points. You’ll be amazed by the results of the work of these ball screw nuts.
screwshaft

Threaded shank

Wood screws are usually not fully threaded because the shank has an unthreaded portion at the top. This shoulder part forces the screw to compress 2 pieces of wood, which prevents the screw from overheating and compromising the materials strength. As the screw is threaded partially up, it is not as difficult to remove as a fully threaded screw. However, it is important to note that a wood screw will not hold as tightly as 1 with a fully threaded shank.
In addition to being universal, screw threads can be of different sizes. For example, a M8 screw has a thread pitch of 1.25 mm. To avoid confusion, screw thread pitches are commonly given with a multiplication sign. For example, M8x1 means that the screw is 8 mm in diameter but has a thread pitch of 1 mm per 360-degree rotation. Those who are not familiar with these dimensions may find it confusing.
The OD of the threaded portion of a bolt is generally smaller than the OD of the nut. If the shank is too deep for the nut to fit, the threads may bottom out. This is why it’s important to use a thread-cutting bit with a small thread diameter. You can use a micrometer or caliper to measure the thread diameter. This tool will also allow you to easily identify which screw size fits where and how well.
The metric system is the most widely used. Fasteners with DIN numbers are generally metric in size. This makes them very useful for industrial settings. You can find metric-sized screws anywhere, as long as you buy them from a reputable manufacturer. These fasteners also come with a dog point, which is used for safety wire. If the screw needs to be replaced, the shank can be drilled with a hole for a safety wire or for a dog-point.

Round head

A round head screw is the most common type used for machine screws. Other common types include truss head, flat head, and hexed head. Each has a different profile and are used for different purposes. A round head screw is typically wider than a flat or a hexed head, and has a slightly rounded surface. These screws are useful for projects involving sheet metal or sheet-metal parts. Round heads are usually slightly wider than a hex head screw, and they may also be used as a substitute for washers in certain applications. However, truss heads are not necessary for every project.
A wood screw has a smooth shank that protrudes above the surface of the material it is attaching. A metal screw has a threaded shaft that is fully threaded from head to point, and a fully threaded shaft provides more bite. Two common head styles are round head and pan head. If the task requires the screw to be flush or countersunk, the round head will be the best choice.
Another type is the Reed & Prince screw drive. These are similar to Phillips screws but have a 75-degree V shape. They are commonly used in marine hardware and are also known as BNAE NFL22-070. This type is also used for steel plate hangers. In addition to round head and pan head screws, there are a variety of other screw types. You can even get a head with a slotted head if you know where to look.
Screw diameters are specified according to the ISO 261 or ISO 262 standards. An M8 screw has a diameter of 8.25 mm. The M8 screw has a pitch of 1.25 mm, which is equivalent to 1 mm per 360 degrees. There are several other standard screw sizes and thread diameters available. You can find them all by consulting the relevant standards. But remember, the metric system is the most popular.
screwshaft

Self-locking mechanism

A self-locking mechanism for a screw shaft is a device that secures the screw to its supporting member in a failure position. The locking mechanism provides a positive connection between the screw shaft and the control surface during normal operation, and locks the screw to its supporting member when the screw fails. Previous attempts to solve this problem have typically used secondary nuts with free play on the screw, which were intentionally designed to jam when loaded. However, such a device can be unreliable, which is why the present invention offers a more robust and reliable locking mechanism.
The self-locking function of a screw depends on several factors, including its pitch angle and the coefficient of friction of the threads. The angle of friction must be less than the tangent of the material pairing to prevent untightening of the screw. Screws with self-locking mechanisms have an efficiency e lower than 50%, which is less than half. Self-locking screws also have the benefit of being less efficient than a standard screw.
Unlike a normal screw, a self-locking screw can be turned in either direction. The nut 22 rotates with the screw shaft, and the member 23 is translated in an axial direction. Regardless of the direction of the rotation of the screw, this axial translation will result in the opposite moment to that input moment. While screw self-locking mechanisms are typically less expensive, they are more reliable and durable.
Another important feature of self-locking screws is that they are not susceptible to independent loosening. The screw cannot rotate without a certain amount of torque. In addition, a self-locking screw shaft must have a small wedge with a smaller half-angle than the arctangent of the static friction. This means that the torque applied by the driver must be greater than the torque needed to overcome the friction.

China Professional Wire and Cable Coiling Machine   wholesaler China Professional Wire and Cable Coiling Machine   wholesaler

China supplier Brand New PE Physical Foaming Coaxial Cable Extrusion Machine Line with Free Design Custom

Product Description

Brand New PE Physical Foaming Coaxial Cable Extrusion Machine Line
 
Application
Suitable for all types of coaxial, communications, transmission wires, and low loss cable core wires extruded.
Such as CATV, RG, SYWV,JIS, DVI, CAT5E, CAT6,ATA and so. To achieve solid, double, 3 layer co-extruded extrusion.
pplication materials: FM-PE, PE
Foam degree: Imported high-pressure nitrogen gas injection system Max.82%; low nitrogen injection system Max.75%
Quality control: Monitor and capacitance matching tester diameter line detection, full control of the product diameter, parameters such as foaming degree
Head: the head of the physical foaming
Electronic control: Imports drive or PLC touch screen control (optional)
Optional: high pressure systems or low-pressure nitrogen injection system
 
Specifications

Machine model TX-459225173

Contact Person:
Bella: -135-0922-5173(mobile)
Carson: -131-8977-3886 (mobile),

 
 

How to Determine the Quality of a Worm Shaft

There are many advantages of a worm shaft. It is easier to manufacture, as it does not require manual straightening. Among these benefits are ease of maintenance, reduced cost, and ease of installation. In addition, this type of shaft is much less prone to damage due to manual straightening. This article will discuss the different factors that determine the quality of a worm shaft. It also discusses the Dedendum, Root diameter, and Wear load capacity.
worm shaft

Root diameter

There are various options when choosing worm gearing. The selection depends on the transmission used and production possibilities. The basic profile parameters of worm gearing are described in the professional and firm literature and are used in geometry calculations. The selected variant is then transferred to the main calculation. However, you must take into account the strength parameters and the gear ratios for the calculation to be accurate. Here are some tips to choose the right worm gearing.
The root diameter of a worm gear is measured from the center of its pitch. Its pitch diameter is a standardized value that is determined from its pressure angle at the point of zero gearing correction. The worm gear pitch diameter is calculated by adding the worm’s dimension to the nominal center distance. When defining the worm gear pitch, you have to keep in mind that the root diameter of the worm shaft must be smaller than the pitch diameter.
Worm gearing requires teeth to evenly distribute the wear. For this, the tooth side of the worm must be convex in the normal and centre-line sections. The shape of the teeth, referred to as the evolvent profile, resembles a helical gear. Usually, the root diameter of a worm gear is more than a quarter inch. However, a half-inch difference is acceptable.
Another way to calculate the gearing efficiency of a worm shaft is by looking at the worm’s sacrificial wheel. A sacrificial wheel is softer than the worm, so most wear and tear will occur on the wheel. Oil analysis reports of worm gearing units almost always show a high copper and iron ratio, suggesting that the worm’s gearing is ineffective.

Dedendum

The dedendum of a worm shaft refers to the radial length of its tooth. The pitch diameter and the minor diameter determine the dedendum. In an imperial system, the pitch diameter is referred to as the diametral pitch. Other parameters include the face width and fillet radius. Face width describes the width of the gear wheel without hub projections. Fillet radius measures the radius on the tip of the cutter and forms a trochoidal curve.
The diameter of a hub is measured at its outer diameter, and its projection is the distance the hub extends beyond the gear face. There are 2 types of addendum teeth, 1 with short-addendum teeth and the other with long-addendum teeth. The gears themselves have a keyway (a groove machined into the shaft and bore). A key is fitted into the keyway, which fits into the shaft.
Worm gears transmit motion from 2 shafts that are not parallel, and have a line-toothed design. The pitch circle has 2 or more arcs, and the worm and sprocket are supported by anti-friction roller bearings. Worm gears have high friction and wear on the tooth teeth and restraining surfaces. If you’d like to know more about worm gears, take a look at the definitions below.
worm shaft

CZPT’s whirling process

Whirling process is a modern manufacturing method that is replacing thread milling and hobbing processes. It has been able to reduce manufacturing costs and lead times while producing precision gear worms. In addition, it has reduced the need for thread grinding and surface roughness. It also reduces thread rolling. Here’s more on how CZPT whirling process works.
The whirling process on the worm shaft can be used for producing a variety of screw types and worms. They can produce screw shafts with outer diameters of up to 2.5 inches. Unlike other whirling processes, the worm shaft is sacrificial, and the process does not require machining. A vortex tube is used to deliver chilled compressed air to the cutting point. If needed, oil is also added to the mix.
Another method for hardening a worm shaft is called induction hardening. The process is a high-frequency electrical process that induces eddy currents in metallic objects. The higher the frequency, the more surface heat it generates. With induction heating, you can program the heating process to harden only specific areas of the worm shaft. The length of the worm shaft is usually shortened.
Worm gears offer numerous advantages over standard gear sets. If used correctly, they are reliable and highly efficient. By following proper setup guidelines and lubrication guidelines, worm gears can deliver the same reliable service as any other type of gear set. The article by Ray Thibault, a mechanical engineer at the University of Virginia, is an excellent guide to lubrication on worm gears.

Wear load capacity

The wear load capacity of a worm shaft is a key parameter when determining the efficiency of a gearbox. Worms can be made with different gear ratios, and the design of the worm shaft should reflect this. To determine the wear load capacity of a worm, you can check its geometry. Worms are usually made with teeth ranging from 1 to 4 and up to twelve. Choosing the right number of teeth depends on several factors, including the optimisation requirements, such as efficiency, weight, and centre-line distance.
Worm gear tooth forces increase with increased power density, causing the worm shaft to deflect more. This reduces its wear load capacity, lowers efficiency, and increases NVH behavior. Advances in lubricants and bronze materials, combined with better manufacturing quality, have enabled the continuous increase in power density. Those 3 factors combined will determine the wear load capacity of your worm gear. It is critical to consider all 3 factors before choosing the right gear tooth profile.
The minimum number of gear teeth in a gear depends on the pressure angle at zero gearing correction. The worm diameter d1 is arbitrary and depends on a known module value, mx or mn. Worms and gears with different ratios can be interchanged. An involute helicoid ensures proper contact and shape, and provides higher accuracy and life. The involute helicoid worm is also a key component of a gear.
Worm gears are a form of ancient gear. A cylindrical worm engages with a toothed wheel to reduce rotational speed. Worm gears are also used as prime movers. If you’re looking for a gearbox, it may be a good option. If you’re considering a worm gear, be sure to check its load capacity and lubrication requirements.
worm shaft

NVH behavior

The NVH behavior of a worm shaft is determined using the finite element method. The simulation parameters are defined using the finite element method and experimental worm shafts are compared to the simulation results. The results show that a large deviation exists between the simulated and experimental values. In addition, the bending stiffness of the worm shaft is highly dependent on the geometry of the worm gear toothings. Hence, an adequate design for a worm gear toothing can help reduce the NVH (noise-vibration) behavior of the worm shaft.
To calculate the worm shaft’s NVH behavior, the main axes of moment of inertia are the diameter of the worm and the number of threads. This will influence the angle between the worm teeth and the effective distance of each tooth. The distance between the main axes of the worm shaft and the worm gear is the analytical equivalent bending diameter. The diameter of the worm gear is referred to as its effective diameter.
The increased power density of a worm gear results in increased forces acting on the corresponding worm gear tooth. This leads to a corresponding increase in deflection of the worm gear, which negatively affects its efficiency and wear load capacity. In addition, the increasing power density requires improved manufacturing quality. The continuous advancement in bronze materials and lubricants has also facilitated the continued increase in power density.
The toothing of the worm gears determines the worm shaft deflection. The bending stiffness of the worm gear toothing is also calculated by using a tooth-dependent bending stiffness. The deflection is then converted into a stiffness value by using the stiffness of the individual sections of the worm shaft. As shown in figure 5, a transverse section of a two-threaded worm is shown in the figure.

China supplier Brand New PE Physical Foaming Coaxial Cable Extrusion Machine Line   with Free Design CustomChina supplier Brand New PE Physical Foaming Coaxial Cable Extrusion Machine Line   with Free Design Custom