Tag Archives: metal cnc machine

China Professional Low Cost Metal Sheet Plate Steel Round Pipe Profile 5 Axis CNC Plasma Cutting Machine with Free Design Custom

Product Description

CNC Pipe and Sheet Plasma Cutting Machine

can cut metal plate and metal pipe.

Main Features

1.Good Working stability, high frequency interfere effectively plasma, lightweight portable;
2.Support 2 cutting ways of flame and plasma;
3.Economic benefits, the structure and design is contracted. it adopts humanistic positive man-machine conversation and operate easily;
4.Cutting has high quality, high effect level, high precision;
5.Programmable cutting arbitrary shape parts of line and arc;
6.Dynamic and static graphic display, easy to learn. 
Can convert CAD file to program file in computer, through USB flash drive transmits to machine to realize cutting all kinds’ graphs. 
And also can program and operate directly on the machine.
7.English and Chinese interface can free to convert;
8.Pre-sale will train and after-sale will track service.

Application

  • Applicable Industry:
    Mechanical & Electrical equipment, stainless steel products, construction & decoration industry, billboard, sheet metal structure, high-low voltage electric cabinet, kitchenware, car accessories, saw bits, precision metal parts, metal art-ware, etc.
  • Applicable Materials:
    Stainless steel sheet & hollow pipe, Carbon steel sheet & hollow pipe, Stainless Iron sheet & hollow pipe, Galvanized sheet & hollow pipe, Manganese steel, Electrolytic plate, Aluminum alloy, Titanium alloy, Titanium alloy, Aluminum Brass, Rare metal, etc.

 Parameter 

Model Parameter

CNC pipe and plate plasma cutting machine 

Model

  1325

  1530

   2040

Working size

1300*2500mm

1500*3000mm

2000*4000mm

Rang of pipe diamter (Diameter)
 
30-400 mm 

Three axes Repeat positioning accuracy

±0.05mm

Process precision 

±0.35mm

Transmission system

X,Y ZheJiang  AMT high-precision,zero clearance increased linear guide+ rack

Z the arc voltage control

 cutting speed

V ≤2000mm/min  

Working voltage     

AC380/50HZ        

Control system

ZheJiang  START plasma cutting system

Standard high sensitivity arc voltage device

Software support

FASTCAM,AutoCAD and else 

Instruction format

G code

Drive system

Stepper motor (Optional ZheJiang  AC servo motor)

Plasma power

Domestic Xihu (West Lake) Dis. 60A-200A

Imported US Powermax 60A-000A

Power cutting ability

Domestic Xihu (West Lake) Dis. 0.5-35mm

US Powermax series 0.5-35mm

Moving speed 

V = 10-2000 mm/ min 

 

 

Screw Shaft Types and Uses

Various uses for the screw shaft are numerous. Its major diameter is the most significant characteristic, while other aspects include material and function are important. Let us explore these topics in more detail. There are many different types of screw shafts, which include bronze, brass, titanium, and stainless steel. Read on to learn about the most common types. Listed below are some of the most common uses for a screw shaft. These include: C-clamps, screw jacks, vises, and more.
screwshaft

Major diameter of a screw shaft

A screw’s major diameter is measured in fractions of an inch. This measurement is commonly found on the screw label. A screw with a major diameter less than 1/4″ is labeled #0 to #14; those with a larger diameter are labeled fractions of an inch in a corresponding decimal scale. The length of a screw, also known as the shaft, is another measure used for the screw.
The major diameter of a screw shaft is the greater of its 2 outer diameters. When determining the major diameter of a screw, use a caliper, micrometer, or steel rule to make an accurate measurement. Generally, the first number in the thread designation refers to the major diameter. Therefore, if a screw has a thread of 1/2-10 Acme, the major diameter of the thread is.500 inches. The major diameter of the screw shaft will be smaller or larger than the original diameter, so it’s a good idea to measure the section of the screw that’s least used.
Another important measurement is the pitch. This measures the distance between 1 thread’s tip and the next thread’s corresponding point. Pitch is an important measurement because it refers to the distance a screw will advance in 1 turn. While lead and pitch are 2 separate concepts, they are often used interchangeably. As such, it’s important to know how to use them properly. This will make it easier to understand how to select the correct screw.
There are 3 different types of threads. The UTS and ISO metric threads are similar, but their common values for Dmaj and Pmaj are different. A screw’s major diameter is the largest diameter, while the minor diameter is the lowest. A nut’s major diameter, or the minor diameter, is also called the nut’s inside diameter. A bolt’s major diameter and minor diameter are measured with go/no-go gauges or by using an optical comparator.
The British Association and American Society of Mechanical Engineers standardized screw threads in the 1840s. A standard named “British Standard Whitworth” became a common standard for screw threads in the United States through the 1860s. In 1864, William Sellers proposed a new standard that simplified the Whitworth thread and had a 55 degree angle at the tip. Both standards were widely accepted. The major diameter of a screw shaft can vary from 1 manufacturer to another, so it’s important to know what size screw you’re looking for.
In addition to the thread angle, a screw’s major diameter determines the features it has and how it should be used. A screw’s point, or “thread”, is usually spiky and used to drill into an object. A flat tipped screw, on the other hand, is flat and requires a pre-drilled hole for installation. Finally, the diameter of a screw bolt is determined by the major and minor diameters.
screwshaft

Material of a screw shaft

A screw shaft is a piece of machine equipment used to move raw materials. The screw shaft typically comprises a raw material w. For a particular screw to function correctly, the raw material must be sized properly. In general, screw shafts should have an axial-direction length L equal to the moving amount k per 1/2 rotation of the screw. The screw shaft must also have a proper contact angle ph1 in order to prevent raw material from penetrating the screw shaft.
The material used for the shaft depends on its application. A screw with a ball bearing will work better with a steel shaft than 1 made of aluminum. Aluminum screw shafts are the most commonly used for this application. Other materials include titanium. Some manufacturers also prefer stainless steel. However, if you want a screw with a more modern appearance, a titanium shaft is the way to go. In addition to that, screws with a chromium finish have better wear resistance.
The material of a screw shaft is important for a variety of applications. It needs to have high precision threads and ridges to perform its function. Manufacturers often use high-precision CNC machines and lathes to create screw shafts. Different screw shafts can have varying sizes and shapes, and each 1 will have different applications. Listed below are the different materials used for screw shafts. If you’re looking for a high-quality screw shaft, you should shop around.
A lead screw has an inverse relationship between contact surface pressure and sliding velocity. For heavier axial loads, a reduced rotation speed is needed. This curve will vary depending on the material used for the screw shaft and its lubrication conditions. Another important factor is end fixity. The material of a screw shaft can be either fixed or free, so make sure to consider this factor when choosing the material of your screw. The latter can also influence the critical speed and rigidity of the screw.
A screw shaft’s major diameter is the distance between the outer edge of the thread and the inner smooth part. Screw shafts are typically between 2 and 16 millimeters in diameter. They feature a cylindrical shape, a pointy tip, and a wider head and drive than the former. There are 2 basic types of screw heads: threaded and non-threaded. These have different properties and purposes.
Lead screws are a cost-effective alternative to ball screws, and are used for low power and light to medium-duty applications. They offer some advantages, but are not recommended for continuous power transmission. But lead screws are often quieter and smaller, which make them useful for many applications. Besides, they are often used in a kinematic pair with a nut object. They are also used to position objects.
screwshaft

Function of a screw shaft

When choosing a screw for a linear motion system, there are many factors that should be considered, such as the position of the actuator and the screw and nut selection. Other considerations include the overall length of travel, the fastest move profile, the duty cycle, and the repeatability of the system. As a result, screw technology plays a critical role in the overall performance of a system. Here are the key factors to consider when choosing a screw.
Screws are designed with an external threading that digs out material from a surface or object. Not all screw shafts have complete threading, however. These are known as partially threaded screws. Fully threaded screws feature complete external threading on the shaft and a pointed tip. In addition to their use as fasteners, they can be used to secure and tighten many different types of objects and appliances.
Another factor to consider is axial force. The higher the force, the bigger the screw needs to be. Moreover, screws are similar to columns that are subject to both tension and compression loads. During the compression load, bowing or deflection is not desirable, so the integrity of the screw is important. So, consider the design considerations of your screw shaft and choose accordingly. You can also increase the torque by using different shaft sizes.
Shaft collars are also an important consideration. These are used to secure and position components on the shaft. They also act as stroke limiters and to retain sprocket hubs, bearings, and shaft protectors. They are available in several different styles. In addition to single and double split shaft collars, they can be threaded or set screw. To ensure that a screw collar will fit tightly to the shaft, the cap must not be overtightened.
Screws can be cylindrical or conical and vary in length and diameter. They feature a thread that mates with a complementary helix in the material being screwed into. A self-tapping screw will create a complementary helix during driving, creating a complementary helix that allows the screw to work with the material. A screw head is also an essential part of a screw, providing gripping power and compression to the screw.
A screw’s pitch and lead are also important parameters to consider. The pitch of the screw is the distance between the crests of the threads, which increases mechanical advantage. If the pitch is too small, vibrations will occur. If the pitch is too small, the screw may cause excessive wear and tear on the machine and void its intended purpose. The screw will be useless if it can’t be adjusted. And if it can’t fit a shaft with the required diameter, then it isn’t a good choice.
Despite being the most common type, there are various types of screws that differ in their functions. For example, a machine screw has a round head, while a truss head has a lower-profile dome. An oval-its point screw is a good choice for situations where the screw needs to be adjusted frequently. Another type is a soft nylon tip, which looks like a Half-dog point. It is used to grip textured or curved surfaces.

China Professional Low Cost Metal Sheet Plate Steel Round Pipe Profile 5 Axis CNC Plasma Cutting Machine   with Free Design CustomChina Professional Low Cost Metal Sheet Plate Steel Round Pipe Profile 5 Axis CNC Plasma Cutting Machine   with Free Design Custom

China Hot selling Carbon Steel /Aluminum/ Metal CNC Plasma Tube Cutting Machine Steel Pipe Cutting Machine near me shop

Product Description

CE quality cnc plasma flame metal steel automatic pipe cutting machine Metal Tube hypertherm plasma Cutting Machine
Introduction
Suitable for cutting the cylinder branch, two, 3 or more layer saddle cutting of the main pipe.
ZLQ seriers CNC Steel pipe cutter is special CNC equipment which is used for cutting metal pipe automatically. It can reslize auto program and auto CNC nesting work for any complicated joint type of intertube and pipe and non-inter tube. And can cut any type welding bevel at 1 time. This product is widely used for steel structure, ship building, bridge and heavy machine industries.

Cutting technical specifications:
1. Cutting steel type: Round & square
2. Figures can be cut: Variety of graphics by outspreading intersecting line, can be with bevel
3. Control Axes: 3-4-5-6 axies, bevel cutting with 6 spindle and six-interlocking.
4. Diameter: 30-1000mm or customize (bigger dia. )
5. Thickness of the pipe: Flame: 5-200mm, plasma: 1-60mm
6. Bevel cutting range: Flame 60degree, plasma 30, 45degree.
7. Cutting way: Plasma or /and gas
8. Pipe max length: ≥ 6m
9. Pipe clamping method: Chuck
10. Power-driven: High-precision AC servo+dedicated planetary reducer
11. Control System: A dedicated intersecting line cutting system: 6-axis controlled, with quantitative intersecting line cutting macro library
Performance and precision mechanical movement indicators
ZLQ-65 intersection Cutting Machine CNC positioning accuracy, repeatability reach JB / T 5102-99 standard, cutting up JB/T10045.3-1999 quality standards, cutting roughness Ra ≤ 12.5μ M.
Requirements of the moving parts in the work process run smoothly and without noticeable vibration ( beat ) phenomenon.
1, the workpiece rotary drive

Drive System Precision gear box,: Gear transmission
Speed: 0.1-25 rpm / min
Japanese CZPT servo: A5 Series AC servo system
Reset Accuracy: ± 0.5mm
Adjustment range: 6-1000

2, CZPT the car moved axially along the workpiece
Precision Drive System: ZheJiang Planetary gear box, gear, rack gear
Effective stroke: 12000mm CZPT car
Japanese CZPT servo: A5 Series AC servo system
Reset Accuracy: ± 0.5mm

3, CZPT fan axial plane workpiece swing axle

Precision Drive System: ZheJiang Planetary gear box, gear, rack gear
Swing angle: 30 ° -150 °
Japanese CZPT servo: A5 Series AC servo system
Positioning accuracy of ± 0.3 °
4, CZPT the car moves up and down shaft

Drive system: Linear guide, ball screw drive to pay
Torch the car up and down stroke determine: The form of the cutter ( cutting diameter compliance requirements )
Japanese CZPT servo: A5 Series AC servo system
Reset Accuracy: ± 0.2mm
5, the workpiece CZPT fan oscillating axle radial plane
Drive system: Curved rack ( arms drive )
Swing angle: 30 ° -150 °
Japanese CZPT servo: A5 Series AC servo system
Positioning accuracy: ± 0.3 °

6, the auxiliary measurement axis: Profiling measurements and the pipe surface to prevent collisions with the torch

7, the CZPT moves back and forth along the tube axis radial
Drive system: Linear guide, rack size
Move forward and backward stroke: 500mm
Japanese CZPT servo: A5 Series AC servo system
Mobile accuracy: ± 0.2mm

Cutting video:

 NO.  ITEM  PARAMETERS
 1.  pipe diameter  Φ=30~1000mm
 2.  Cutting mode  Flame & plasma 
 3.  Flame cutting thickness  δ 5mm-180mm
 4.  Plasma cutting pipe thickness  1-32mm
 5.  Guid rail  15,000mm
 6.  Effective cutting pipe length  12,000mm
 7.  pipe ovality  ≤1%
 8.  Cutting speed  V≤5000mm/min
 9.  translational speed V0=10~6000 mm/min
 10.  Cutting torch axial direction swing angle  α=±45°  Maxα=±60°
 11.  Cutting torch  radial direction  swing angle  β=±45°
 12. Loading capacity  3,000Kg
     
 kinematic axis  Axis choice  6 axis
 X axis:  Pipe rotating axis  YES
 Y axis:  Torch along pipe axial direction horizontal migration   YES
 A axis:  torch long pipe axial direction vertical swing   YES
 Z axis:  Torch  vertical movement   YES
 B axis:  torch along pipe  radial direction  horizontal swing   YES
 w axis:  torch along pipe  radial direction  horizontal migration   YES

 Cut Sample:

 Package Picture:

 
Our Factory:

Customer Visit:

CE&ISO Certificate:

FAQ:
1. Are you factory or foreign trade company?
We are over 17 years experienced manufacturers, large-scale production of CNC cutting machine.

2. Where is your factory located? How can I visit there? 
Our factory is located in HangZhou, ZheJiang . We will meet you at airport or train station. Warmly welcome to visit us! 

3. What’s the quality of your products? 
We are very focused on the quality of the products, All spare parts of this machine come with best brand and best quality, after completing the installation we will test the machine for 48 hours. Our factory has gained CE, ISO9001 authentication.

4. What shall we do if don’t know how to operate your machine after bought from you? 
We have detailed installation and operating instructions attached, also comes with video, it is very simple. We have telephone and email support at 24 hours a day.

5. What other things also need after we bought your machines? 
(1) With flame cutting: oxygen and fuel gas.
(2) With plasma cutting: air compressor. Plasma power is purchased by us, so that we can debug online, and we all need very good plasma power to ensure quality.

6. What are your payment terms? 
We support T/T, L/C, Western Union, Alibaba Trade Assurance and so on. Other ways can also be received after we both sides discussion and agreement.

Contact Me:
AlisonChen 

What is a drive shaft?

If you notice a clicking noise while driving, it is most likely the driveshaft. An experienced auto mechanic will be able to tell you if the noise is coming from both sides or from 1 side. If it only happens on 1 side, you should check it. If you notice noise on both sides, you should contact a mechanic. In either case, a replacement driveshaft should be easy to find.
air-compressor

The drive shaft is a mechanical part

A driveshaft is a mechanical device that transmits rotation and torque from the engine to the wheels of the vehicle. This component is essential to the operation of any driveline, as the mechanical power from the engine is transmitted to the PTO (power take-off) shaft, which hydraulically transmits that power to connected equipment. Different drive shafts contain different combinations of joints to compensate for changes in shaft length and angle. Some types of drive shafts include connecting shafts, internal constant velocity joints, and external fixed joints. They also contain anti-lock system rings and torsional dampers to prevent overloading the axle or causing the wheels to lock.
Although driveshafts are relatively light, they need to handle a lot of torque. Torque applied to the drive shaft produces torsional and shear stresses. Because they have to withstand torque, these shafts are designed to be lightweight and have little inertia or weight. Therefore, they usually have a joint, coupling or rod between the 2 parts. Components can also be bent to accommodate changes in the distance between them.
The drive shaft can be made from a variety of materials. The most common material for these components is steel, although alloy steels are often used for high-strength applications. Alloy steel, chromium or vanadium are other materials that can be used. The type of material used depends on the application and size of the component. In many cases, metal driveshafts are the most durable and cheapest option. Plastic shafts are used for light duty applications and have different torque levels than metal shafts.

It transfers power from the engine to the wheels

A car’s powertrain consists of an electric motor, transmission, and differential. Each section performs a specific job. In a rear-wheel drive vehicle, the power generated by the engine is transmitted to the rear tires. This arrangement improves braking and handling. The differential controls how much power each wheel receives. The torque of the engine is transferred to the wheels according to its speed.
The transmission transfers power from the engine to the wheels. It is also called “transgender”. Its job is to ensure power is delivered to the wheels. Electric cars cannot drive themselves and require a gearbox to drive forward. It also controls how much power reaches the wheels at any given moment. The transmission is the last part of the power transmission chain. Despite its many names, the transmission is the most complex component of a car’s powertrain.
The driveshaft is a long steel tube that transmits mechanical power from the transmission to the wheels. Cardan joints connect to the drive shaft and provide flexible pivot points. The differential assembly is mounted on the drive shaft, allowing the wheels to turn at different speeds. The differential allows the wheels to turn at different speeds and is very important when cornering. Axles are also important to the performance of the car.

It has a rubber boot that protects it from dust and moisture

To keep this boot in good condition, you should clean it with cold water and a rag. Never place it in the dryer or in direct sunlight. Heat can deteriorate the rubber and cause it to shrink or crack. To prolong the life of your rubber boots, apply rubber conditioner to them regularly. Indigenous peoples in the Amazon region collect latex sap from the bark of rubber trees. Then they put their feet on the fire to solidify the sap.
air-compressor

it has a U-shaped connector

The drive shaft has a U-joint that transfers rotational energy from the engine to the axle. Defective gimbal joints can cause vibrations when the vehicle is in motion. This vibration is often mistaken for a wheel balance problem. Wheel balance problems can cause the vehicle to vibrate while driving, while a U-joint failure can cause the vehicle to vibrate when decelerating and accelerating, and stop when the vehicle is stopped.
The drive shaft is connected to the transmission and differential using a U-joint. It allows for small changes in position between the 2 components. This prevents the differential and transmission from remaining perfectly aligned. The U-joint also allows the drive shaft to be connected unconstrained, allowing the vehicle to move. Its main purpose is to transmit electricity. Of all types of elastic couplings, U-joints are the oldest.
Your vehicle’s U-joints should be inspected at least twice a year, and the joints should be greased. When checking the U-joint, you should hear a dull sound when changing gears. A clicking sound indicates insufficient grease in the bearing. If you hear or feel vibrations when shifting gears, you may need to service the bearings to prolong their life.

it has a slide-in tube

The telescopic design is a modern alternative to traditional driveshaft designs. This innovative design is based on an unconventional design philosophy that combines advances in material science and manufacturing processes. Therefore, they are more efficient and lighter than conventional designs. Slide-in tubes are a simple and efficient design solution for any vehicle application. Here are some of its benefits. Read on to learn why this type of shaft is ideal for many applications.
The telescopic drive shaft is an important part of the traditional automobile transmission system. These driveshafts allow linear motion of the 2 components, transmitting torque and rotation throughout the vehicle’s driveline. They also absorb energy if the vehicle collides. Often referred to as foldable driveshafts, their popularity is directly dependent on the evolution of the automotive industry.
air-compressor

It uses a bearing press to replace worn or damaged U-joints

A bearing press is a device that uses a rotary press mechanism to install or remove worn or damaged U-joints from a drive shaft. With this tool, you can replace worn or damaged U-joints in your car with relative ease. The first step involves placing the drive shaft in the vise. Then, use the 11/16″ socket to press the other cup in far enough to install the clips. If the cups don’t fit, you can use a bearing press to remove them and repeat the process. After removing the U-joint, use a grease nipple Make sure the new grease nipple is installed correctly.
Worn or damaged U-joints are a major source of driveshaft failure. If 1 of them were damaged or damaged, the entire driveshaft could dislocate and the car would lose power. Unless you have a professional mechanic doing the repairs, you will have to replace the entire driveshaft. Fortunately, there are many ways to do this yourself.
If any of these warning signs appear on your vehicle, you should consider replacing the damaged or worn U-joint. Common symptoms of damaged U-joints include rattling or periodic squeaking when moving, rattling when shifting, wobbling when turning, or rusted oil seals. If you notice any of these symptoms, take your vehicle to a qualified mechanic for a full inspection. Neglecting to replace a worn or damaged u-joint on the driveshaft can result in expensive and dangerous repairs and can cause significant damage to your vehicle.

China Hot selling Carbon Steel /Aluminum/ Metal CNC Plasma Tube Cutting Machine Steel Pipe Cutting Machine   near me shop China Hot selling Carbon Steel /Aluminum/ Metal CNC Plasma Tube Cutting Machine Steel Pipe Cutting Machine   near me shop

China OEM Trade Assurance Metal CNC 1500*3000mm 4000W Fiber Laser Cutting Machine with Good quality

Product Description

Acme Laser CNC Fiber Laser Cutting machine LP-3015D Exchange platform and Full Cover

MachineDetails

Cutting Capability of IPG

RESONATOR IPG YLS-1KW YLS-2KW YLS-3KW YLS-4KW YLS-6KW
Power (W) 1000 2000 3000 4000 6000
Recommended cooling power (kW) 2,1 4,2 6,4 8,5 12,6
Electrical supply (kW) 3,1 6,1 9,1 12,1 18,2
Maximum sheet thickness:          
Steel (mm) 10 15 20 20 25
Stainless Steel (mm) 4 8 12 15 20
Aluminium (mm) 2 6 12 12 15
Brass (mm) 2 4 6 8 10
Copper (mm) 2 4 6 8 10

Transportation

 
 
APPLICATION
 

Especially for Filing Cabinet, Kitchen ware, refrigerator, car and train cover cabinet, Chassis and Cabinets, rotors and so on production, and material sheet thickness less than 2mm carbon steel, stainless steel, silicon steel, galvanized steel and other metal roll materials. 

Why Choose Fiber Laser for Stainless Steel, Mild Steel and Aluminum, etc., ?
More companies than ever before are investing in fiber lasers. While the automotive industry was undoubtedly the early adopter, this relatively new solution is being snapped up across the board and when you consider the advantages, it’s easy to see why. 

EXTRA SPEED
The sheer speed of fiber laser markers makes them the first choice for customers looking to increase efficiency. They’re the fastest laser marking technology at their wavelength, delivering marking times of less than 1 second for some applications. While older, more established laser technology is available-including diode-pumped solid-state (DPSS) lasers, lamp-pumped lasers, and carbon dioxide (CO2) lasers-none can beat a fiber laser for combined mark speed and quality. 
This means fiber lasers can break new ground. For example, 1 of Laser Lines’ customers is an automotive component manufacturer that needs to mark serial codes exceptionally fast-in under half a second-which wouldn’t be possible with any other type of laser. 

ENERGY EFFECIENCY
Despite being faster, fiber lasers are energy-efficient compared to the alternatives. Not only does this result in reduced power consumption, but it also helps make the system simpler, smaller, and more reliable.
Fiber laser technology uses basic air cooling rather than an additional chiller unit, which would be costly and cumbersome. With many businesses finding both cash and floor space in short supply, compact and efficient fiber laser marking solutions are proving to be the right fit.

LONG LIFE
The life expectancy of a fiber laser far exceeds that of other laser solutions. In fact, the diode module in a fiber laser typically last 3 times longer than other technologies. Most lasers have a life of around 30,000 hours, which typically equates to about 15 years’ use. 
Fiber lasers have an expected life of around 100,000 hours, which means about 45 years’ use. Saying that, will companies still be using the same fiber laser in 45 years? I doubt it! Regardless, this option does deliver an impressive return on investment.

About us

A XIHU (WEST LAKE) DIS. FOR FINDING THE RIGHT LASER CUTTING MACHINE
For most manufacturers, buying an industrial laser cutting machine is a major investment. It’s not just the initial price you pay, but the fact that the purchase will have a great impact on the entire manufacturing process. If the wrong equipment is chosen, you have to live with the decision for quite a long time. It is not unusual to see manufacturers keep a laser for 7 to 10 years.
Do you know the best way to go about purchasing a laser cutting machine? Even if you currently own one, how long ago did you buy it, and what has changed since then?
This CZPT should help you in making a capital purchase decision that will drive your manufacturing operations to new heights.

What’s the Application?

Perhaps the real question is, “Should I even be buying a laser cutting machine?” For many reasons, investing in a different cutting system may make more sense for a company’s manufacturing activities. Investigating all available options can minimize any possible regrets in the future.

Do We Really Need to Invest in Laser Cutting?

A company that doesn’t have a laser cutting machine generally subcontracts the work to 1 or several job shops with that capability. This scenario doesn’t involve a lot of risk and can work if you have some flexibility with lead times.
But there will come that time when you have to ask yourself if it is time for the company to bring laser cutting in-house. This has to be considered even if the business relationship with the subcontractor is great.
How do you know if it is the right time to own a laser? Look at how much you are spending monthly for laser-cut parts. In the words of Henry Ford, “If you need a machine and don’t buy it, then you will ultimately find that you have paid for it and don’t have it.”

What Is the True Cost of Running the Equipment?

With such a large investment, a manufacturer needs to know at what level of efficiency the equipment is operating. You need to know more than just if the machine is running or not running. This is where equipment performance monitoring comes in.
It’s important for you to find out if software can measure the laser cutting machine’s overall equipment efficiency (OEE) in real time. If so, can the software be used for your other laser cutting machines, if you have them, so that you might discover “hidden capacity” where you thought there was none?
With the cost of about 1 percent of the equipment price, monitoring software can provide a 10 to 50 percent productivity gain with paybacks of less than 4 months.
 

What Can Be Done to Make the Purchasing Decision Easier?

Answering these questions and obtaining quotes based on the feedback can be used to narrow down the selection of the supplier of a laser cutting machine to 2 to 3 sources. From there you need to find the right model, ask the right questions during equipment demonstrations, and work toward an acceptable price. Remember, there are many important items to discuss during the final negotiation.
The purchase of such a machine can be an overwhelming task. That’s why it might make sense to join an industry association, such as the Fabricators & Manufacturers Association, to network with manufacturing peers to learn from them, or even seek out the assistance of someone that has been through or is familiar with this type of industrial equipment purchase. Such an effort likely would prove to be worthwhile.

 

Applications of Spline Couplings

A spline coupling is a highly effective means of connecting 2 or more components. These types of couplings are very efficient, as they combine linear motion with rotation, and their efficiency makes them a desirable choice in numerous applications. Read on to learn more about the main characteristics and applications of spline couplings. You will also be able to determine the predicted operation and wear. You can easily design your own couplings by following the steps outlined below.
splineshaft

Optimal design

The spline coupling plays an important role in transmitting torque. It consists of a hub and a shaft with splines that are in surface contact without relative motion. Because they are connected, their angular velocity is the same. The splines can be designed with any profile that minimizes friction. Because they are in contact with each other, the load is not evenly distributed, concentrating on a small area, which can deform the hub surface.
Optimal spline coupling design takes into account several factors, including weight, material characteristics, and performance requirements. In the aeronautics industry, weight is an important design factor. S.A.E. and ANSI tables do not account for weight when calculating the performance requirements of spline couplings. Another critical factor is space. Spline couplings may need to fit in tight spaces, or they may be subject to other configuration constraints.
Optimal design of spline couplers may be characterized by an odd number of teeth. However, this is not always the case. If the external spline’s outer diameter exceeds a certain threshold, the optimal spline coupling model may not be an optimal choice for this application. To optimize a spline coupling for a specific application, the user may need to consider the sizing method that is most appropriate for their application.
Once a design is generated, the next step is to test the resulting spline coupling. The system must check for any design constraints and validate that it can be produced using modern manufacturing techniques. The resulting spline coupling model is then exported to an optimisation tool for further analysis. The method enables a designer to easily manipulate the design of a spline coupling and reduce its weight.
The spline coupling model 20 includes the major structural features of a spline coupling. A product model software program 10 stores default values for each of the spline coupling’s specifications. The resulting spline model is then calculated in accordance with the algorithm used in the present invention. The software allows the designer to enter the spline coupling’s radii, thickness, and orientation.
splineshaft

Characteristics

An important aspect of aero-engine splines is the load distribution among the teeth. The researchers have performed experimental tests and have analyzed the effect of lubrication conditions on the coupling behavior. Then, they devised a theoretical model using a Ruiz parameter to simulate the actual working conditions of spline couplings. This model explains the wear damage caused by the spline couplings by considering the influence of friction, misalignment, and other conditions that are relevant to the splines’ performance.
In order to design a spline coupling, the user first inputs the design criteria for sizing load carrying sections, including the external spline 40 of the spline coupling model 30. Then, the user specifies torque margin performance requirement specifications, such as the yield limit, plastic buckling, and creep buckling. The software program then automatically calculates the size and configuration of the load carrying sections and the shaft. These specifications are then entered into the model software program 10 as specification values.
Various spline coupling configuration specifications are input on the GUI screen 80. The software program 10 then generates a spline coupling model by storing default values for the various specifications. The user then can manipulate the spline coupling model by modifying its various specifications. The final result will be a computer-aided design that enables designers to optimize spline couplings based on their performance and design specifications.
The spline coupling model software program continually evaluates the validity of spline coupling models for a particular application. For example, if a user enters a data value signal corresponding to a parameter signal, the software compares the value of the signal entered to the corresponding value in the knowledge base. If the values are outside the specifications, a warning message is displayed. Once this comparison is completed, the spline coupling model software program outputs a report with the results.
Various spline coupling design factors include weight, material properties, and performance requirements. Weight is 1 of the most important design factors, particularly in the aeronautics field. ANSI and S.A.E. tables do not consider these factors when calculating the load characteristics of spline couplings. Other design requirements may also restrict the configuration of a spline coupling.

Applications

Spline couplings are a type of mechanical joint that connects 2 rotating shafts. Its 2 parts engage teeth that transfer load. Although splines are commonly over-dimensioned, they are still prone to fatigue and static behavior. These properties also make them prone to wear and tear. Therefore, proper design and selection are vital to minimize wear and tear on splines. There are many applications of spline couplings.
A key design is based on the size of the shaft being joined. This allows for the proper spacing of the keys. A novel method of hobbing allows for the formation of tapered bases without interference, and the root of the keys is concentric with the axis. These features enable for high production rates. Various applications of spline couplings can be found in various industries. To learn more, read on.
FE based methodology can predict the wear rate of spline couplings by including the evolution of the coefficient of friction. This method can predict fretting wear from simple round-on-flat geometry, and has been calibrated with experimental data. The predicted wear rate is reasonable compared to the experimental data. Friction evolution in spline couplings depends on the spline geometry. It is also crucial to consider the lubrication condition of the splines.
Using a spline coupling reduces backlash and ensures proper alignment of mated components. The shaft’s splined tooth form transfers rotation from the splined shaft to the internal splined member, which may be a gear or other rotary device. A spline coupling’s root strength and torque requirements determine the type of spline coupling that should be used.
The spline root is usually flat and has a crown on 1 side. The crowned spline has a symmetrical crown at the centerline of the face-width of the spline. As the spline length decreases toward the ends, the teeth are becoming thinner. The tooth diameter is measured in pitch. This means that the male spline has a flat root and a crowned spline.
splineshaft

Predictability

Spindle couplings are used in rotating machinery to connect 2 shafts. They are composed of 2 parts with teeth that engage each other and transfer load. Spline couplings are commonly over-dimensioned and are prone to static and fatigue behavior. Wear phenomena are also a common problem with splines. To address these issues, it is essential to understand the behavior and predictability of these couplings.
Dynamic behavior of spline-rotor couplings is often unclear, particularly if the system is not integrated with the rotor. For example, when a misalignment is not present, the main response frequency is 1 X-rotating speed. As the misalignment increases, the system starts to vibrate in complex ways. Furthermore, as the shaft orbits depart from the origin, the magnitudes of all the frequencies increase. Thus, research results are useful in determining proper design and troubleshooting of rotor systems.
The model of misaligned spline couplings can be obtained by analyzing the stress-compression relationships between 2 spline pairs. The meshing force model of splines is a function of the system mass, transmitting torque, and dynamic vibration displacement. This model holds when the dynamic vibration displacement is small. Besides, the CZPT stepping integration method is stable and has high efficiency.
The slip distributions are a function of the state of lubrication, coefficient of friction, and loading cycles. The predicted wear depths are well within the range of measured values. These predictions are based on the slip distributions. The methodology predicts increased wear under lightly lubricated conditions, but not under added lubrication. The lubrication condition and coefficient of friction are the key factors determining the wear behavior of splines.

China OEM Trade Assurance Metal CNC 1500*3000mm 4000W Fiber Laser Cutting Machine   with Good qualityChina OEM Trade Assurance Metal CNC 1500*3000mm 4000W Fiber Laser Cutting Machine   with Good quality