Tag Archives: metal laser cutting machine

China OEM Trade Assurance Metal CNC 1500*3000mm 4000W Fiber Laser Cutting Machine with Good quality

Product Description

Acme Laser CNC Fiber Laser Cutting machine LP-3015D Exchange platform and Full Cover

MachineDetails

Cutting Capability of IPG

RESONATOR IPG YLS-1KW YLS-2KW YLS-3KW YLS-4KW YLS-6KW
Power (W) 1000 2000 3000 4000 6000
Recommended cooling power (kW) 2,1 4,2 6,4 8,5 12,6
Electrical supply (kW) 3,1 6,1 9,1 12,1 18,2
Maximum sheet thickness:          
Steel (mm) 10 15 20 20 25
Stainless Steel (mm) 4 8 12 15 20
Aluminium (mm) 2 6 12 12 15
Brass (mm) 2 4 6 8 10
Copper (mm) 2 4 6 8 10

Transportation

 
 
APPLICATION
 

Especially for Filing Cabinet, Kitchen ware, refrigerator, car and train cover cabinet, Chassis and Cabinets, rotors and so on production, and material sheet thickness less than 2mm carbon steel, stainless steel, silicon steel, galvanized steel and other metal roll materials. 

Why Choose Fiber Laser for Stainless Steel, Mild Steel and Aluminum, etc., ?
More companies than ever before are investing in fiber lasers. While the automotive industry was undoubtedly the early adopter, this relatively new solution is being snapped up across the board and when you consider the advantages, it’s easy to see why. 

EXTRA SPEED
The sheer speed of fiber laser markers makes them the first choice for customers looking to increase efficiency. They’re the fastest laser marking technology at their wavelength, delivering marking times of less than 1 second for some applications. While older, more established laser technology is available-including diode-pumped solid-state (DPSS) lasers, lamp-pumped lasers, and carbon dioxide (CO2) lasers-none can beat a fiber laser for combined mark speed and quality. 
This means fiber lasers can break new ground. For example, 1 of Laser Lines’ customers is an automotive component manufacturer that needs to mark serial codes exceptionally fast-in under half a second-which wouldn’t be possible with any other type of laser. 

ENERGY EFFECIENCY
Despite being faster, fiber lasers are energy-efficient compared to the alternatives. Not only does this result in reduced power consumption, but it also helps make the system simpler, smaller, and more reliable.
Fiber laser technology uses basic air cooling rather than an additional chiller unit, which would be costly and cumbersome. With many businesses finding both cash and floor space in short supply, compact and efficient fiber laser marking solutions are proving to be the right fit.

LONG LIFE
The life expectancy of a fiber laser far exceeds that of other laser solutions. In fact, the diode module in a fiber laser typically last 3 times longer than other technologies. Most lasers have a life of around 30,000 hours, which typically equates to about 15 years’ use. 
Fiber lasers have an expected life of around 100,000 hours, which means about 45 years’ use. Saying that, will companies still be using the same fiber laser in 45 years? I doubt it! Regardless, this option does deliver an impressive return on investment.

About us

A XIHU (WEST LAKE) DIS. FOR FINDING THE RIGHT LASER CUTTING MACHINE
For most manufacturers, buying an industrial laser cutting machine is a major investment. It’s not just the initial price you pay, but the fact that the purchase will have a great impact on the entire manufacturing process. If the wrong equipment is chosen, you have to live with the decision for quite a long time. It is not unusual to see manufacturers keep a laser for 7 to 10 years.
Do you know the best way to go about purchasing a laser cutting machine? Even if you currently own one, how long ago did you buy it, and what has changed since then?
This CZPT should help you in making a capital purchase decision that will drive your manufacturing operations to new heights.

What’s the Application?

Perhaps the real question is, “Should I even be buying a laser cutting machine?” For many reasons, investing in a different cutting system may make more sense for a company’s manufacturing activities. Investigating all available options can minimize any possible regrets in the future.

Do We Really Need to Invest in Laser Cutting?

A company that doesn’t have a laser cutting machine generally subcontracts the work to 1 or several job shops with that capability. This scenario doesn’t involve a lot of risk and can work if you have some flexibility with lead times.
But there will come that time when you have to ask yourself if it is time for the company to bring laser cutting in-house. This has to be considered even if the business relationship with the subcontractor is great.
How do you know if it is the right time to own a laser? Look at how much you are spending monthly for laser-cut parts. In the words of Henry Ford, “If you need a machine and don’t buy it, then you will ultimately find that you have paid for it and don’t have it.”

What Is the True Cost of Running the Equipment?

With such a large investment, a manufacturer needs to know at what level of efficiency the equipment is operating. You need to know more than just if the machine is running or not running. This is where equipment performance monitoring comes in.
It’s important for you to find out if software can measure the laser cutting machine’s overall equipment efficiency (OEE) in real time. If so, can the software be used for your other laser cutting machines, if you have them, so that you might discover “hidden capacity” where you thought there was none?
With the cost of about 1 percent of the equipment price, monitoring software can provide a 10 to 50 percent productivity gain with paybacks of less than 4 months.
 

What Can Be Done to Make the Purchasing Decision Easier?

Answering these questions and obtaining quotes based on the feedback can be used to narrow down the selection of the supplier of a laser cutting machine to 2 to 3 sources. From there you need to find the right model, ask the right questions during equipment demonstrations, and work toward an acceptable price. Remember, there are many important items to discuss during the final negotiation.
The purchase of such a machine can be an overwhelming task. That’s why it might make sense to join an industry association, such as the Fabricators & Manufacturers Association, to network with manufacturing peers to learn from them, or even seek out the assistance of someone that has been through or is familiar with this type of industrial equipment purchase. Such an effort likely would prove to be worthwhile.

 

Applications of Spline Couplings

A spline coupling is a highly effective means of connecting 2 or more components. These types of couplings are very efficient, as they combine linear motion with rotation, and their efficiency makes them a desirable choice in numerous applications. Read on to learn more about the main characteristics and applications of spline couplings. You will also be able to determine the predicted operation and wear. You can easily design your own couplings by following the steps outlined below.
splineshaft

Optimal design

The spline coupling plays an important role in transmitting torque. It consists of a hub and a shaft with splines that are in surface contact without relative motion. Because they are connected, their angular velocity is the same. The splines can be designed with any profile that minimizes friction. Because they are in contact with each other, the load is not evenly distributed, concentrating on a small area, which can deform the hub surface.
Optimal spline coupling design takes into account several factors, including weight, material characteristics, and performance requirements. In the aeronautics industry, weight is an important design factor. S.A.E. and ANSI tables do not account for weight when calculating the performance requirements of spline couplings. Another critical factor is space. Spline couplings may need to fit in tight spaces, or they may be subject to other configuration constraints.
Optimal design of spline couplers may be characterized by an odd number of teeth. However, this is not always the case. If the external spline’s outer diameter exceeds a certain threshold, the optimal spline coupling model may not be an optimal choice for this application. To optimize a spline coupling for a specific application, the user may need to consider the sizing method that is most appropriate for their application.
Once a design is generated, the next step is to test the resulting spline coupling. The system must check for any design constraints and validate that it can be produced using modern manufacturing techniques. The resulting spline coupling model is then exported to an optimisation tool for further analysis. The method enables a designer to easily manipulate the design of a spline coupling and reduce its weight.
The spline coupling model 20 includes the major structural features of a spline coupling. A product model software program 10 stores default values for each of the spline coupling’s specifications. The resulting spline model is then calculated in accordance with the algorithm used in the present invention. The software allows the designer to enter the spline coupling’s radii, thickness, and orientation.
splineshaft

Characteristics

An important aspect of aero-engine splines is the load distribution among the teeth. The researchers have performed experimental tests and have analyzed the effect of lubrication conditions on the coupling behavior. Then, they devised a theoretical model using a Ruiz parameter to simulate the actual working conditions of spline couplings. This model explains the wear damage caused by the spline couplings by considering the influence of friction, misalignment, and other conditions that are relevant to the splines’ performance.
In order to design a spline coupling, the user first inputs the design criteria for sizing load carrying sections, including the external spline 40 of the spline coupling model 30. Then, the user specifies torque margin performance requirement specifications, such as the yield limit, plastic buckling, and creep buckling. The software program then automatically calculates the size and configuration of the load carrying sections and the shaft. These specifications are then entered into the model software program 10 as specification values.
Various spline coupling configuration specifications are input on the GUI screen 80. The software program 10 then generates a spline coupling model by storing default values for the various specifications. The user then can manipulate the spline coupling model by modifying its various specifications. The final result will be a computer-aided design that enables designers to optimize spline couplings based on their performance and design specifications.
The spline coupling model software program continually evaluates the validity of spline coupling models for a particular application. For example, if a user enters a data value signal corresponding to a parameter signal, the software compares the value of the signal entered to the corresponding value in the knowledge base. If the values are outside the specifications, a warning message is displayed. Once this comparison is completed, the spline coupling model software program outputs a report with the results.
Various spline coupling design factors include weight, material properties, and performance requirements. Weight is 1 of the most important design factors, particularly in the aeronautics field. ANSI and S.A.E. tables do not consider these factors when calculating the load characteristics of spline couplings. Other design requirements may also restrict the configuration of a spline coupling.

Applications

Spline couplings are a type of mechanical joint that connects 2 rotating shafts. Its 2 parts engage teeth that transfer load. Although splines are commonly over-dimensioned, they are still prone to fatigue and static behavior. These properties also make them prone to wear and tear. Therefore, proper design and selection are vital to minimize wear and tear on splines. There are many applications of spline couplings.
A key design is based on the size of the shaft being joined. This allows for the proper spacing of the keys. A novel method of hobbing allows for the formation of tapered bases without interference, and the root of the keys is concentric with the axis. These features enable for high production rates. Various applications of spline couplings can be found in various industries. To learn more, read on.
FE based methodology can predict the wear rate of spline couplings by including the evolution of the coefficient of friction. This method can predict fretting wear from simple round-on-flat geometry, and has been calibrated with experimental data. The predicted wear rate is reasonable compared to the experimental data. Friction evolution in spline couplings depends on the spline geometry. It is also crucial to consider the lubrication condition of the splines.
Using a spline coupling reduces backlash and ensures proper alignment of mated components. The shaft’s splined tooth form transfers rotation from the splined shaft to the internal splined member, which may be a gear or other rotary device. A spline coupling’s root strength and torque requirements determine the type of spline coupling that should be used.
The spline root is usually flat and has a crown on 1 side. The crowned spline has a symmetrical crown at the centerline of the face-width of the spline. As the spline length decreases toward the ends, the teeth are becoming thinner. The tooth diameter is measured in pitch. This means that the male spline has a flat root and a crowned spline.
splineshaft

Predictability

Spindle couplings are used in rotating machinery to connect 2 shafts. They are composed of 2 parts with teeth that engage each other and transfer load. Spline couplings are commonly over-dimensioned and are prone to static and fatigue behavior. Wear phenomena are also a common problem with splines. To address these issues, it is essential to understand the behavior and predictability of these couplings.
Dynamic behavior of spline-rotor couplings is often unclear, particularly if the system is not integrated with the rotor. For example, when a misalignment is not present, the main response frequency is 1 X-rotating speed. As the misalignment increases, the system starts to vibrate in complex ways. Furthermore, as the shaft orbits depart from the origin, the magnitudes of all the frequencies increase. Thus, research results are useful in determining proper design and troubleshooting of rotor systems.
The model of misaligned spline couplings can be obtained by analyzing the stress-compression relationships between 2 spline pairs. The meshing force model of splines is a function of the system mass, transmitting torque, and dynamic vibration displacement. This model holds when the dynamic vibration displacement is small. Besides, the CZPT stepping integration method is stable and has high efficiency.
The slip distributions are a function of the state of lubrication, coefficient of friction, and loading cycles. The predicted wear depths are well within the range of measured values. These predictions are based on the slip distributions. The methodology predicts increased wear under lightly lubricated conditions, but not under added lubrication. The lubrication condition and coefficient of friction are the key factors determining the wear behavior of splines.

China OEM Trade Assurance Metal CNC 1500*3000mm 4000W Fiber Laser Cutting Machine   with Good qualityChina OEM Trade Assurance Metal CNC 1500*3000mm 4000W Fiber Laser Cutting Machine   with Good quality