China supplier Rechargeable Power Bank Hammer Flashlight USB Rechargeable Car Flashlight LED Lamp Emmergency Car Tool, Travel&Outdoor Tool, Rechargeable Camping Light near me shop

Product Description

Product Description

CACCES Rechargeable Power Bank Hammer Flashlight USB Rechargeable Car Flashlight LED lamp Emmergency Car Tool, Travel&Outdoor Tool, Rechargable Camping Light O101MF Original Supply

Detailed Photos

Product Parameters


CACCES Rechargeable Power Bank Hammer Flashlight USB Rechargeable Car Flashlight LED lamp Emmergency Car Tool, Travel&Outdoor Tool, Rechargable Camping Light 
O101MF Original Supply
Input DC 5.0V 1.2A Output DC 5.0V 2.1A
Built-in battery 3.7V 2000mAh,
18650 Lithium
Lifespan of Light Sources >100000H
Headlamp Strong white light 1W
Weak white light 0.5W
Material TTL ALUMINUM ALLOY + 100% fresh ABS pp
Certification CE/FCC OEM MOQ 2,000 pcs
Desk Lamp Strong white light 1W
Weak white light 0.5W
Red light 1W
Storage Tem. -40 – 85 degree
Radio Range of FM 76MHz – 108 MHz Radio Spec >110dB/10cm
Alarm Speaker 8Ω/2W Arc Ignition Power ≤10W
Brand CACCES Charger Devices: Cell Mobile Phone/Tablet/Camera/Mp3/Mp4/GPS etc
Item Dim. L255mm*Φ70mm Net Weight: 413g
Color Box Dim. 285*155*60mm Weight with 3 accessories 696G
Colors: Black Part No. O101MF


About this item

  • (Multipurpose Flashlight) 500 Lumens (max) ultra-bright flashlight can be adjusted bright light to the length of 700 feet. Flashlight is equipped with EMERGENCY HAMMER, BELT CUTTING KINIFE, WARNING function, and emergency magnet adsorption, and practical HAND-CRANKED power generator 2000mAh RECHARGEABLE BATTERY.


  • (Multi-Mode) Tactical Flashlight offers 5 light modes, can be also adjustable intensity from far to near, high to low, or S.O.S. LED flashlight, have 120DB alarm 5 voices protect your SAFETY. Sidelight offers high white LED light & low white LED light and Red/Blue SOS strobe.


  • (USB and HAND CRANK POWER/SOLAR Energy) 18650 Lithium battery power flashlight can be charged directly by crank handle, or using our USB cord, connect the flashlight and emergency power supply to your electronics ensure NO WORRY TRAVEL. It can be charged by crank handle (250-300 rounds full charge). Flashlight is easy to carry and don’t worry out of charge.


  • (Widely Usable) Elaborate design make flashlight is widely used in many situations. As a FLASHLIGHT when you camping and hiking. As a LAMP when you need to light up and reading. As an emergency HAMMER when you need to break something. As an emergency KNIFE when you need to cut off belt, rope, straps … As an ALRAM when you need help. As a LIGHTER when you need ignition. As a RADIO when you need to enjoy a colorful LIFE. As a COMPASS when you need to find a way back home! …


       CACCES O101MF/O102MF is absolutely your RELAIBLE PARTNER!



1Q: When can I get the quotation?
1A: CONFIDENCE AUTOMOTIVE usually quotes you within 6 hours after we get your inquiry.

2Q: Can I make my customize logo and packaging or private label?
2A: Yes, please contact CONFIDENCE AUTOMOTIVE for details in need for private logo.

3Q: Can you do design for my ideas or drawing?
3A: Yes, we have professional designers and own factories, supportive factories and packaging factories. All your idea is easy to realize with us, pls be rest assured!

4Q: Do you accept small orders?
4A: Yes, we accept trial order to test your market demand and help you grow to the NO.1 player same as we have done for all other partners in world markets.

5Q: May I get your samples to check the quality first?
5A: Yes, normally sample within 7 days and some samples are free.

6Q: What’s the shipping way?
6A: Re.samples order via FedEx, DHL, TNT express with the most effective and cheap way for you save cost and large quantity normally by sea, or rail.

7Q: I am a new hand, how to make business with you?
7A: We help you from the products, price, source, design, inspection, delivery, shipment, customs clearance, and door to door in need. Or any business way with us, we are open mind, welcome to discuss with us. CONFIDENCE AUTOMOTIVE IS ALWAYS YOUR BEST RELIABLE PARTNER IN CHINA.

WHY choose us?

1, Supply Chain: Import high quality raw material incl German BAYER, Japan Mitsubishi, Vietnam biggest rubber factory, etc ensure all production process is reliable and uniform.

2, ODM Design System: We are 1 main car spare parts manufacturer, brand make OE, O.E.M, O.D.M car wiper blade, wipe arm, LED headlight, car horn, safety flashlight, outdoor flashlight, and packagings that working with world top brands in main markets with the capability to realize all your ideas from drafts, drawings, pictures, samples,… to the BEST OE quality without any doubt, TS16949 qualified.

3, Professional Service: Rich experience with top players in the markets over 10 years with a big service team support ONE-TO-ONE, FACE-TO-FACE business negotiation, communication, consulting, information sharing, and aftersales service help you save cost MAKE EASY business.

4, One-stop Products: Own independent and cooperative factories DIRECT supply! All car parts, accessories or related ones is welcomed openly and we commit to support our partners with ONE-STOP parts, accessories business in China help save purchasing cost, transportation cost, storage charge and time cost for ONE FAST CHEAP SHIPMENT timely!

5, Inspection System: All orders with 1 record system from 1st samples to finally confirmed products, photos, productions before shipment, customers can EASY TO TRACK EVERY ORDER and get 100% assured satisfied goods!

6, Business Growth: We have seasonal market info, new hot products advice, exhibition news to share freely for NEW BUSINESS, OR HELP SALES INCREASE regularly.

Please contact us directly below without hesitate, your inquiry will be answered promptly.

Stiffness and Torsional Vibration of Spline-Couplings

In this paper, we describe some basic characteristics of spline-coupling and examine its torsional vibration behavior. We also explore the effect of spline misalignment on rotor-spline coupling. These results will assist in the design of improved spline-coupling systems for various applications. The results are presented in Table 1.

Stiffness of spline-coupling

The stiffness of a spline-coupling is a function of the meshing force between the splines in a rotor-spline coupling system and the static vibration displacement. The meshing force depends on the coupling parameters such as the transmitting torque and the spline thickness. It increases nonlinearly with the spline thickness.
A simplified spline-coupling model can be used to evaluate the load distribution of splines under vibration and transient loads. The axle spline sleeve is displaced a z-direction and a resistance moment T is applied to the outer face of the sleeve. This simple model can satisfy a wide range of engineering requirements but may suffer from complex loading conditions. Its asymmetric clearance may affect its engagement behavior and stress distribution patterns.
The results of the simulations show that the maximum vibration acceleration in both Figures 10 and 22 was 3.03 g/s. This results indicate that a misalignment in the circumferential direction increases the instantaneous impact. Asymmetry in the coupling geometry is also found in the meshing. The right-side spline’s teeth mesh tightly while those on the left side are misaligned.
Considering the spline-coupling geometry, a semi-analytical model is used to compute stiffness. This model is a simplified form of a classical spline-coupling model, with submatrices defining the shape and stiffness of the joint. As the design clearance is a known value, the stiffness of a spline-coupling system can be analyzed using the same formula.
The results of the simulations also show that the spline-coupling system can be modeled using MASTA, a high-level commercial CAE tool for transmission analysis. In this case, the spline segments were modeled as a series of spline segments with variable stiffness, which was calculated based on the initial gap between spline teeth. Then, the spline segments were modelled as a series of splines of increasing stiffness, accounting for different manufacturing variations. The resulting analysis of the spline-coupling geometry is compared to those of the finite-element approach.
Despite the high stiffness of a spline-coupling system, the contact status of the contact surfaces often changes. In addition, spline coupling affects the lateral vibration and deformation of the rotor. However, stiffness nonlinearity is not well studied in splined rotors because of the lack of a fully analytical model.

Characteristics of spline-coupling

The study of spline-coupling involves a number of design factors. These include weight, materials, and performance requirements. Weight is particularly important in the aeronautics field. Weight is often an issue for design engineers because materials have varying dimensional stability, weight, and durability. Additionally, space constraints and other configuration restrictions may require the use of spline-couplings in certain applications.
The main parameters to consider for any spline-coupling design are the maximum principal stress, the maldistribution factor, and the maximum tooth-bearing stress. The magnitude of each of these parameters must be smaller than or equal to the external spline diameter, in order to provide stability. The outer diameter of the spline must be at least 4 inches larger than the inner diameter of the spline.
Once the physical design is validated, the spline coupling knowledge base is created. This model is pre-programmed and stores the design parameter signals, including performance and manufacturing constraints. It then compares the parameter values to the design rule signals, and constructs a geometric representation of the spline coupling. A visual model is created from the input signals, and can be manipulated by changing different parameters and specifications.
The stiffness of a spline joint is another important parameter for determining the spline-coupling stiffness. The stiffness distribution of the spline joint affects the rotor’s lateral vibration and deformation. A finite element method is a useful technique for obtaining lateral stiffness of spline joints. This method involves many mesh refinements and requires a high computational cost.
The diameter of the spline-coupling must be large enough to transmit the torque. A spline with a larger diameter may have greater torque-transmitting capacity because it has a smaller circumference. However, the larger diameter of a spline is thinner than the shaft, and the latter may be more suitable if the torque is spread over a greater number of teeth.
Spline-couplings are classified according to their tooth profile along the axial and radial directions. The radial and axial tooth profiles affect the component’s behavior and wear damage. Splines with a crowned tooth profile are prone to angular misalignment. Typically, these spline-couplings are oversized to ensure durability and safety.

Stiffness of spline-coupling in torsional vibration analysis

This article presents a general framework for the study of torsional vibration caused by the stiffness of spline-couplings in aero-engines. It is based on a previous study on spline-couplings. It is characterized by the following 3 factors: bending stiffness, total flexibility, and tangential stiffness. The first criterion is the equivalent diameter of external and internal splines. Both the spline-coupling stiffness and the displacement of splines are evaluated by using the derivative of the total flexibility.
The stiffness of a spline joint can vary based on the distribution of load along the spline. Variables affecting the stiffness of spline joints include the torque level, tooth indexing errors, and misalignment. To explore the effects of these variables, an analytical formula is developed. The method is applicable for various kinds of spline joints, such as splines with multiple components.
Despite the difficulty of calculating spline-coupling stiffness, it is possible to model the contact between the teeth of the shaft and the hub using an analytical approach. This approach helps in determining key magnitudes of coupling operation such as contact peak pressures, reaction moments, and angular momentum. This approach allows for accurate results for spline-couplings and is suitable for both torsional vibration and structural vibration analysis.
The stiffness of spline-coupling is commonly assumed to be rigid in dynamic models. However, various dynamic phenomena associated with spline joints must be captured in high-fidelity drivetrain models. To accomplish this, a general analytical stiffness formulation is proposed based on a semi-analytical spline load distribution model. The resulting stiffness matrix contains radial and tilting stiffness values as well as torsional stiffness. The analysis is further simplified with the blockwise inversion method.
It is essential to consider the torsional vibration of a power transmission system before selecting the coupling. An accurate analysis of torsional vibration is crucial for coupling safety. This article also discusses case studies of spline shaft wear and torsionally-induced failures. The discussion will conclude with the development of a robust and efficient method to simulate these problems in real-life scenarios.

Effect of spline misalignment on rotor-spline coupling

In this study, the effect of spline misalignment in rotor-spline coupling is investigated. The stability boundary and mechanism of rotor instability are analyzed. We find that the meshing force of a misaligned spline coupling increases nonlinearly with spline thickness. The results demonstrate that the misalignment is responsible for the instability of the rotor-spline coupling system.
An intentional spline misalignment is introduced to achieve an interference fit and zero backlash condition. This leads to uneven load distribution among the spline teeth. A further spline misalignment of 50um can result in rotor-spline coupling failure. The maximum tensile root stress shifted to the left under this condition.
Positive spline misalignment increases the gear mesh misalignment. Conversely, negative spline misalignment has no effect. The right-handed spline misalignment is opposite to the helix hand. The high contact area is moved from the center to the left side. In both cases, gear mesh is misaligned due to deflection and tilting of the gear under load.
This variation of the tooth surface is measured as the change in clearance in the transverse plain. The radial and axial clearance values are the same, while the difference between the 2 is less. In addition to the frictional force, the axial clearance of the splines is the same, which increases the gear mesh misalignment. Hence, the same procedure can be used to determine the frictional force of a rotor-spline coupling.
Gear mesh misalignment influences spline-rotor coupling performance. This misalignment changes the distribution of the gear mesh and alters contact and bending stresses. Therefore, it is essential to understand the effects of misalignment in spline couplings. Using a simplified system of helical gear pair, Hong et al. examined the load distribution along the tooth interface of the spline. This misalignment caused the flank contact pattern to change. The misaligned teeth exhibited deflection under load and developed a tilting moment on the gear.
The effect of spline misalignment in rotor-spline couplings is minimized by using a mechanism that reduces backlash. The mechanism comprises cooperably splined male and female members. One member is formed by 2 coaxially aligned splined segments with end surfaces shaped to engage in sliding relationship. The connecting device applies axial loads to these segments, causing them to rotate relative to 1 another.

China supplier Rechargeable Power Bank Hammer Flashlight USB Rechargeable Car Flashlight LED Lamp Emmergency Car Tool, Travel&Outdoor Tool, Rechargeable Camping Light   near me shop China supplier Rechargeable Power Bank Hammer Flashlight USB Rechargeable Car Flashlight LED Lamp Emmergency Car Tool, Travel&Outdoor Tool, Rechargeable Camping Light   near me shop