Tag Archives: machinery machinery

China Standard Crawler Drilling Rigs Drilling Machine Water Wells Drilling Rigs Drilling Machinery near me shop

Product Description

Crawler Drilling Rigs Drilling Machine Water Wells Drilling Rigs drilling machinery

Product Description                                                                  

1. Crawler  type ,hydraulic control, easy to move and operate.
2. Capable ,multi-functional ,high efficiency and economic .it can be used with air compressor or mud pump.
3.It adapt to different and complex stratum.
4.It is widely used in industrial and agriculture water project, drill water well, testing well and other exploration borehole. In particular, in drilling hole for geothermal heating, it can also meet the engineering basis for reinforcement, loose gravel drilling rock formation connected with a variety of engineering.

Technical Parameters                                                                

Model XYD-130 XYD-180 XYD-2

 

Axle Spindle Types and Installation

Are you looking for a new axle spindle for your vehicle? If so, you’ve come to the right place. Learn more about their types, functions, and installation. After reading this article, you’ll be well on your way to finding your new axle spindle. Axle spindles are essential to your vehicle. There are several types and each has unique characteristics. Here’s how to choose the best 1 for your car.

Dimensions

Axle spindle dimensions are crucial for safe wheel support. This component experiences significant stress and load during bearing mounting and must provide sufficient strength. The axle spindle can be hot-forged or shaped to include an integral shoulder. The shape of the bearing stop region must be abruptly transitioned from a straight to a curved configuration. Dimensions of axle spindle vary with different materials, manufacturing techniques, and applications.
The bearing surfaces of the axle spindle are 1.376 inches across, while the bearing spacer is 1.061 inch across. The axle spindle is 1.376 inches long and includes a cotter pin and nut. Typical axle spindle dimensions are listed below. Some axles may have additional components to reduce their weight, while others may not have any. The number of axles and bearings is also important to consider when determining the dimensions of the axle.
The outside shape of the axle spindle 40 is similar to that of the prior art spindle 10. The outer wheel bearing region 44 is cylindrical with a diameter D 1 and an inner wheel bearing region 46. An axially-separating transition region 48 separates the inner bearing region 46 from the outer wheel bearing region 44. It is important to note that the internal diameter is generally slightly larger than the outer wheel bearing region 46.
Axle spindles can be integrally formed or welded to the housing or central beam. They can also be designed differently depending on the intended function. For example, the trailer axle spindle may have a circular or rectangular cross section. Once again, axle spindles are important for safety and longevity, so it is important to know their dimensions. You can also check online for the dimensions of axle spindles.
Driveshaft

Function

Axle spindles are crucial components of a vehicle’s suspension system. They enable a vehicle to move forward, turn, brake, and accelerate. The axle also supports the wheel bearings. In addition to supporting the wheel hub, the axle spindle connects the arms of each wheel to the chassis. This piece is also known as a steering knuckle. The axle spindle’s job is to provide sufficient strength to support the axle.
The functional elements of an axle spindle are cylindrical and have a transition region and an outer surface with an irregular pattern. They have a first and a second diameter, and are shaped to form the spindle’s beam portion and spindle region. The transition region forms a pivotal connection between the axle and the suspension. It also provides the connection between the axle and the trailer. It allows a vehicle to rotate without causing excessive vibrations.
Axle spindles can be circular in structure and are similar to those of the prior art. They support wheel hub configurations. The first end of a spindle is threaded, while the second end is open. The outer wheel bearing region has an outer surface with a diameter D1, while the inner wheel bearing region 46 has a cylindrical outer surface with a diameter D2. The transition region separates the spindle from the rest of the axle.
The spindle nut retains the wheel hub on the spindle, whereas the spindle nut holds the hub assembly in place. A spindle nut retains the wheel on the spindle. A hub cap protects the locking nut assembly and lubrication area. A hub cap is also a common component of the axle. The hub cap also provides a protective shield for the spindle nut.
Steering axle spindles do not extend to the right of the oil seal. They extend from the steering kunckle, which is pivotally joined to the steering axle beam. Despite the differences in bearing seals, wheel hub mounting means, and brake assemblies, the basic spindle configuration is the same. A spindle consists of 2 axially separated bearing regions, 1 with a larger diameter than the other, with a bearing stop adjacent to the inner bearing region.
Driveshaft

Types

The axle is the basic unit of an automobile, and it includes several components. Among these are bearings, axle housings, and wheel hubs. Bearings and axle housings take on all of the radial loads placed on them during operation. As a result, they are necessary to ensure that a vehicle is able to function at its optimum level. But if you’re not sure what these components are, they can make all the difference in your ride.
Axle type depends on a number of factors, including the amount of force produced. In some cases, the vehicle already has pre-designed axles that come in standard formats, but in other cases, a customer can order a custom-made axle for the specific needs of his vehicle. Customized axles give the vehicle operator greater control over the speed and torque of the wheels. To choose the correct axle type for your vehicle, it’s helpful to know the measurements of the axle.
Axle gear sets and lubrication passages are also different. Reverse-cut gears can’t be used in place of standard cut gears, and vice-versa. The 2 types of axle are compatible, but the spline count of the differential case must match that of the axle. It’s important to remember that a different type of axle may work with a different type of machine tool.
Different axle spindle materials have their own advantages and disadvantages. Some are more durable than others, depending on their load capacity. Disc brake hubs and axle spindles are similar to the non-braking ones, but include a rotor and a caliper yoke. The yoke design on the rotor or caliper spindle is specific for each rotor.
Bearing-type axles are the most durable. They transfer the weight of the vehicle to the axle casing. The axle housing is retained by a flange bolted to the hub, and the axle bearings are secured on the spindle by a large nut. Alternatively, axles with bearings are supported solely on the axle spindle and don’t require a hub. Floating axles are typically better for long-term operation, but may be a limited choice for vehicles.
Driveshaft

Installation

Axle spindle installation involves tightening the axle spindle nut to retain the spacer and bearing cones in position. When properly tightened, the axle spindle nut provides the clamp force required to compress the bearing spacer and bearing cone. Preloading is an important part of axle spindle installation because it optimizes bearing life by limiting the tolerance range of end play. Here are some tips on axle spindle installation.
To start the process, you should remove the axle spindle from the vehicle. If the old spindle is not a bolt-on type, a technician will need to cut the weld that holds the axle spindle in place. Then, he or she would need to thread the new spindle back into place. The axle tube must be threaded to accept the new spindle. Once the axle spindle is properly installed, the technician will need to tighten it to the specified torque.
Once the axle spindle is installed, the technician will continue tightening the nut assembly. To ensure a tight grip, the technician will rotate the outer washer while adjusting the torque level on the axle spindle nut. If the nut is not correctly torqued, it may loosen the axle spindle. In addition, improper torque can cause excessive inboard pressure on the outer nut, which can result in over or under-compression of the bearing cone.
The second axle spindle includes an inboard bearing 54 and an outboard bearing 56. The inboard bearing has an inboard surface that abuts the shoulder 26 of the axle spindle. The outboard bearing 57 is mounted on the axle spindle near its outboard end. A bearing spacer 58 is positioned between the inboard and outboard bearings. The spacer and bearing cone group comprises the bearing cones 54 and 56.
Proper alignment of the new spindle is essential for a secure fit. Taking your trailer to a licensed repair facility for a trailer spindle installation is a good idea, as a poorly installed axle can result in improper wheel tracking and premature tire wear. A licensed trailer repair facility can do this for you without much difficulty. This way, you won’t waste your time or frustration on a DIY trailer axle replacement.

China Standard Crawler Drilling Rigs Drilling Machine Water Wells Drilling Rigs Drilling Machinery   near me shop China Standard Crawler Drilling Rigs Drilling Machine Water Wells Drilling Rigs Drilling Machinery   near me shop

China Hot selling CNC Tube Plasma/Flame Pipe Cutting Machinery near me shop

Product Description

Automatic Pipe Cutter Steel Pipe Cutting Machine
Cutting technical specifications:
1. Cutting steel type: Round & square
2. Figures can be cut: Variety of graphics by outspreading intersecting line, can be with bevel
3. Control Axes: 3-4-5-6 axies, bevel cutting with 6 spindle and six-interlocking.
4. Diameter: 30-1

2, CZPT the car moved axially along the workpiece
Precision Drive System: ZheJiang Planetary gear box, gear, rack gear
Effective stroke: 12000mm CZPT car
Japanese CZPT servo: A5 Series AC servo system
Reset Accuracy: ± 0.5mm

3, CZPT fan axial plane workpiece swing axle
Precision Drive System: ZheJiang Planetary gear box, gear, rack gear
Swing angle: 30 ° -150 °
Japanese CZPT servo: A5 Series AC servo system
Positioning accuracy of ± 0.3 °

4, CZPT the car moves up and down shaft
Drive system: Linear guide, ball screw drive to pay
Torch the car up and down stroke determine: The form of the cutter ( cutting diameter compliance requirements )
Japanese CZPT servo: A5 Series AC servo system
Reset Accuracy: ± 0.2mm

5, the workpiece CZPT fan oscillating axle radial plane
Drive system: Curved rack ( arms drive )
Swing angle: 30 ° -150 °
Japanese CZPT servo: A5 Series AC servo system
Positioning accuracy: ± 0.3 °

6, the auxiliary measurement axis: Profiling measurements and the pipe surface to prevent collisions with the torch

7, the CZPT moves back and forth along the tube axis radial
Drive system: Linear guide, rack size
Move forward and backward stroke: 500mm
Japanese CZPT servo: A5 Series AC servo system
Mobile accuracy: ± 0.2mm

Application
1. Intersection cylindrical hole cutting of different directions and diameters on main pipe for vertical intersection between branch pipe and main pipe.
2. Intersection cylindrical end cutting on brand pipe for vertical intersection between branch pipe and main pipe.
3. Bevel cutting on Pipe end
4. Welding Elbow cutting on pipe
5. Branch pipe Intersection end cutting connected with ring main pipe
6. Square hole and branch hole cutting on pipe
7. Cutting off of pipes

Why choose us?
Lansun is continuing to provide wide and flexible solutions by its new Plasma Cutting Machine has high and accuracy cutting quality, the advantageous of low working and investing cost, convenient for placing in a production line by providing flexible and wide different automation solutions.
Lansun Plasma Cutting Machine can easily be operated and carried. It’s produced with latest production technologies and used well-known worldwide standard CNC and cutting equipments.
High Plasma Technology provides high quality cutting on a wide range of material type and thickness.
The acceleration of the system moves the CZPT or part, vibration features, accuracy on movement control, cutting speed and repetition availability, strong mono block frame, accuracy rails, rack and pinion and servo motors provides the high cutting quality on the Plasma Cutting Machine.
 

 NO.  ITEM  PARAMETERS
 1.  pipe diameter  Φ=30~300mm Φ=60~600mm Φ=80~800mm 
 2.  Cutting mode  Flame & plasma 
 3.  Flame cutting thickness  δ 5mm-180mm
 4.  Plasma cutting pipe thickness  1-32mm
 5.  Guid rail  15,000mm
 6.  Effective cutting pipe length  12,000mm
 7.  pipe ovality  ≤1%
 8.  Cutting speed  V≤5000mm/min
 9.  translational speed V0=10~6000 mm/min
 10.  Cutting torch axial direction swing angle  α=±45°  Maxα=±60°
 11.  Cutting torch  radial direction  swing angle  β=±45°
 12. Loading capacity  3,000Kg
     
 kinematic axis  Axis choice  6 axis
 X axis:  Pipe rotating axis  YES
 Y axis:  Torch along pipe axial direction horizontal migration   YES
 A axis:  torch long pipe axial direction vertical swing   YES
 Z axis:  Torch  vertical movement   YES
 B axis:  torch along pipe  radial direction  horizontal swing   YES
 w axis:  torch along pipe  radial direction  horizontal migration   YES

What is a drive shaft?

If you notice a clicking noise while driving, it is most likely the driveshaft. An experienced auto mechanic will be able to tell you if the noise is coming from both sides or from 1 side. If it only happens on 1 side, you should check it. If you notice noise on both sides, you should contact a mechanic. In either case, a replacement driveshaft should be easy to find.
air-compressor

The drive shaft is a mechanical part

A driveshaft is a mechanical device that transmits rotation and torque from the engine to the wheels of the vehicle. This component is essential to the operation of any driveline, as the mechanical power from the engine is transmitted to the PTO (power take-off) shaft, which hydraulically transmits that power to connected equipment. Different drive shafts contain different combinations of joints to compensate for changes in shaft length and angle. Some types of drive shafts include connecting shafts, internal constant velocity joints, and external fixed joints. They also contain anti-lock system rings and torsional dampers to prevent overloading the axle or causing the wheels to lock.
Although driveshafts are relatively light, they need to handle a lot of torque. Torque applied to the drive shaft produces torsional and shear stresses. Because they have to withstand torque, these shafts are designed to be lightweight and have little inertia or weight. Therefore, they usually have a joint, coupling or rod between the 2 parts. Components can also be bent to accommodate changes in the distance between them.
The drive shaft can be made from a variety of materials. The most common material for these components is steel, although alloy steels are often used for high-strength applications. Alloy steel, chromium or vanadium are other materials that can be used. The type of material used depends on the application and size of the component. In many cases, metal driveshafts are the most durable and cheapest option. Plastic shafts are used for light duty applications and have different torque levels than metal shafts.

It transfers power from the engine to the wheels

A car’s powertrain consists of an electric motor, transmission, and differential. Each section performs a specific job. In a rear-wheel drive vehicle, the power generated by the engine is transmitted to the rear tires. This arrangement improves braking and handling. The differential controls how much power each wheel receives. The torque of the engine is transferred to the wheels according to its speed.
The transmission transfers power from the engine to the wheels. It is also called “transgender”. Its job is to ensure power is delivered to the wheels. Electric cars cannot drive themselves and require a gearbox to drive forward. It also controls how much power reaches the wheels at any given moment. The transmission is the last part of the power transmission chain. Despite its many names, the transmission is the most complex component of a car’s powertrain.
The driveshaft is a long steel tube that transmits mechanical power from the transmission to the wheels. Cardan joints connect to the drive shaft and provide flexible pivot points. The differential assembly is mounted on the drive shaft, allowing the wheels to turn at different speeds. The differential allows the wheels to turn at different speeds and is very important when cornering. Axles are also important to the performance of the car.

It has a rubber boot that protects it from dust and moisture

To keep this boot in good condition, you should clean it with cold water and a rag. Never place it in the dryer or in direct sunlight. Heat can deteriorate the rubber and cause it to shrink or crack. To prolong the life of your rubber boots, apply rubber conditioner to them regularly. Indigenous peoples in the Amazon region collect latex sap from the bark of rubber trees. Then they put their feet on the fire to solidify the sap.
air-compressor

it has a U-shaped connector

The drive shaft has a U-joint that transfers rotational energy from the engine to the axle. Defective gimbal joints can cause vibrations when the vehicle is in motion. This vibration is often mistaken for a wheel balance problem. Wheel balance problems can cause the vehicle to vibrate while driving, while a U-joint failure can cause the vehicle to vibrate when decelerating and accelerating, and stop when the vehicle is stopped.
The drive shaft is connected to the transmission and differential using a U-joint. It allows for small changes in position between the 2 components. This prevents the differential and transmission from remaining perfectly aligned. The U-joint also allows the drive shaft to be connected unconstrained, allowing the vehicle to move. Its main purpose is to transmit electricity. Of all types of elastic couplings, U-joints are the oldest.
Your vehicle’s U-joints should be inspected at least twice a year, and the joints should be greased. When checking the U-joint, you should hear a dull sound when changing gears. A clicking sound indicates insufficient grease in the bearing. If you hear or feel vibrations when shifting gears, you may need to service the bearings to prolong their life.

it has a slide-in tube

The telescopic design is a modern alternative to traditional driveshaft designs. This innovative design is based on an unconventional design philosophy that combines advances in material science and manufacturing processes. Therefore, they are more efficient and lighter than conventional designs. Slide-in tubes are a simple and efficient design solution for any vehicle application. Here are some of its benefits. Read on to learn why this type of shaft is ideal for many applications.
The telescopic drive shaft is an important part of the traditional automobile transmission system. These driveshafts allow linear motion of the 2 components, transmitting torque and rotation throughout the vehicle’s driveline. They also absorb energy if the vehicle collides. Often referred to as foldable driveshafts, their popularity is directly dependent on the evolution of the automotive industry.
air-compressor

It uses a bearing press to replace worn or damaged U-joints

A bearing press is a device that uses a rotary press mechanism to install or remove worn or damaged U-joints from a drive shaft. With this tool, you can replace worn or damaged U-joints in your car with relative ease. The first step involves placing the drive shaft in the vise. Then, use the 11/16″ socket to press the other cup in far enough to install the clips. If the cups don’t fit, you can use a bearing press to remove them and repeat the process. After removing the U-joint, use a grease nipple Make sure the new grease nipple is installed correctly.
Worn or damaged U-joints are a major source of driveshaft failure. If 1 of them were damaged or damaged, the entire driveshaft could dislocate and the car would lose power. Unless you have a professional mechanic doing the repairs, you will have to replace the entire driveshaft. Fortunately, there are many ways to do this yourself.
If any of these warning signs appear on your vehicle, you should consider replacing the damaged or worn U-joint. Common symptoms of damaged U-joints include rattling or periodic squeaking when moving, rattling when shifting, wobbling when turning, or rusted oil seals. If you notice any of these symptoms, take your vehicle to a qualified mechanic for a full inspection. Neglecting to replace a worn or damaged u-joint on the driveshaft can result in expensive and dangerous repairs and can cause significant damage to your vehicle.

China Hot selling CNC Tube Plasma/Flame Pipe Cutting Machinery   near me shop China Hot selling CNC Tube Plasma/Flame Pipe Cutting Machinery   near me shop

China best Car Sunshade Frame Automatic 2D Metal Wire Bending Machinery Wire Bender near me factory

Product Description

2D CNC Wire Bending Machine:

Machine Show:

Main Features:

1. Servo drive with stable performance;

 

2. High precision without noise;

 

3. Easy to operate. Adopt special microcomputer control, intelligent forming and high efficiency;

 

4. Automatic straightening, wire feeding, forming, cutting and record number;

 

5. Wire feeding wheels, straightening wheels, forming wheels. Adopt German high quality alloy.
After vacuum heat treatment, it has high abrasion resistance and long service life;

 

6. Suitable for forming Various 2D shapes for all kinds of metal ( such as steel, iron,
stainless steel and aluminum wire, etc. )

 

7. No need molds. Just need to programme the product shape in the control computer.
One machine can bend maximum 80 products.

Details:

Application:

 1. Auto Industry area

 2. Metal wire industry

 3. Display table and cargo shelf

 4. Furniture and Kitchen

 5. Hardware industry

 6. Mattress,Sofa spring area

 7. Architecture area

Main technical Parameters:

Our Workshop:

Our vision:

We are manufacturer located in FoShan. We have been working hard to provide eliable 
quality machine with reasonable price and qualified service for our worldwide customers!

 Our Advantages:

We have professional teams experting in production, design and R&D for over 10 years to meet
clients’ different demands.

High precison and excellent performance for producing all kinds of springs and wire forms, Japanese
Panasonic servo motor for each machine.

Machine test run(at least for 1 week) before we ship the machine, in an effort to insure every
mechanical and electrical parts are in perfect condition.

 After order placed, we accept to adjust the products according to customer’s demand, and remain
the program and tool settings on machine. in order to insure a quick start of machine once customer
receive it.

Packaging and Shipping:

Our Certificates:

As a professional wire bending machinery manufacturer, we will try our best to supply you not only
high quality machine with very competitive price, but also in good service.
We also hope we can make friendly cooperation with you!

FAQ:

Q1: What does your factory produce ?

  A: We produce and export all kinds of automatic wire bending machine. We also can design and
develop the wire bending machines according to your requirements.
 

Q2: What about your standard delivery date ?

  A: Usually 20-30 days.  
 

Q3: Does your factory sale directly ?

 A: Yes. Our factory sells directly,competitive price with high quality and excellent after-sale service.

Our quality products have been export to many countries, such as Germany, Russia, USA, Canada,
Argentina, Peru, Turkey, Iran, Brazil, Spain, South Asia and Middle East countries.
 

Q4: Can you export machines by your factory?

  A: Yes,we can.
 

Q5: Where are your factory?

  A: Our factory is located in FoShan City and Xihu (West Lake) Dis.CZPT city, ZheJiang Province, China.
 

Q6: Will you send engineer to help installing the machine?

  A : Yes, if you need, we can send our engineer to go to your factory to help you install our  machine,
train the workers and make sure the welding machine running well before he leaves.
 

Q7: If the machine get damaged, what can I do ?

   A: In the guarantee time (1 year) , we will send the spare parts to you for free and provide the
technical consultant for anytime. If more terrible, we can send our engineers to your factory.  
We will provide same good after-sale service as the pre-sale service. For any of your questions, 
we will reply within 12 hours.

Contact us:

Ms. Helen Pei

HangZhou Quanjiu Industry Automation Co., Ltd.
Mobile: 86~875849072
Website:

The Benefits of Spline Couplings for Disc Brake Mounting Interfaces

Spline couplings are commonly used for securing disc brake mounting interfaces. Spline couplings are often used in high-performance vehicles, aeronautics, and many other applications. However, the mechanical benefits of splines are not immediately obvious. Listed below are the benefits of spline couplings. We’ll discuss what these advantages mean for you. Read on to discover how these couplings work.

Disc brake mounting interfaces are splined

There are 2 common disc brake mounting interfaces – splined and six-bolt. Splined rotors fit on splined hubs; six-bolt rotors will need an adapter to fit on six-bolt hubs. The six-bolt method is easier to maintain and may be preferred by many cyclists. If you’re thinking of installing a disc brake system, it is important to know how to choose the right splined and center lock interfaces.
splineshaft

Aerospace applications

The splines used for spline coupling in aircraft are highly complex. While some previous researches have addressed the design of splines, few publications have tackled the problem of misaligned spline coupling. Nevertheless, the accurate results we obtained were obtained using dedicated simulation tools, which are not commercially available. Nevertheless, such tools can provide a useful reference for our approach. It would be beneficial if designers could use simple tools for evaluating contact pressure peaks. Our analytical approach makes it possible to find answers to such questions.
The design of a spline coupling for aerospace applications must be accurate to minimize weight and prevent failure mechanisms. In addition to weight reduction, it is necessary to minimize fretting fatigue. The pressure distribution on the spline coupling teeth is a significant factor in determining its fretting fatigue. Therefore, we use analytical and experimental methods to examine the contact pressure distribution in the axial direction of spline couplings.
The teeth of a spline coupling can be categorized by the type of engagement they provide. This study investigates the position of resultant contact forces in the teeth of a spline coupling when applied to pitch diameter. Using FEM models, numerical results are generated for nominal and parallel offset misalignments. The axial tooth profile determines the behavior of the coupling component and its ability to resist wear. Angular misalignment is also a concern, causing misalignment.
In order to assess wear damage of a spline coupling, we must take into consideration the impact of fretting on the components. This wear is caused by relative motion between the teeth that engage them. The misalignment may be caused by vibrations, cyclical tooth deflection, or angular misalignment. The result of this analysis may help designers improve their spline coupling designs and develop improved performance.
CZPT polyimide, an abrasion-resistant polymer, is a popular choice for high-temperature spline couplings. This material reduces friction and wear, provides a low friction surface, and has a low wear rate. Furthermore, it offers up to 50 times the life of metal on metal spline connections. For these reasons, it is important to choose the right material for your spline coupling.
splineshaft

High-performance vehicles

A spline coupler is a device used to connect splined shafts. A typical spline coupler resembles a short pipe with splines on either end. There are 2 basic types of spline coupling: single and dual spline. One type attaches to a drive shaft, while the other attaches to the gearbox. While spline couplings are typically used in racing, they’re also used for performance problems.
The key challenge in spline couplings is to determine the optimal dimension of spline joints. This is difficult because no commercial codes allow the simulation of misaligned joints, which can destroy components. This article presents analytical approaches to estimating contact pressures in spline connections. The results are comparable with numerical approaches but require special codes to accurately model the coupling operation. This research highlights several important issues and aims to make the application of spline couplings in high-performance vehicles easier.
The stiffness of spline assemblies can be calculated using tooth-like structures. Such splines can be incorporated into the spline joint to produce global stiffness for torsional vibration analysis. Bearing reactions are calculated for a certain level of misalignment. This information can be used to design bearing dimensions and correct misalignment. There are 3 types of spline couplings.
Major diameter fit splines are made with tightly controlled outside diameters. This close fit provides concentricity transfer from the male to the female spline. The teeth of the male spline usually have chamfered tips and clearance with fillet radii. These splines are often manufactured from billet steel or aluminum. These materials are renowned for their strength and uniform grain created by the forging process. ANSI and DIN design manuals define classes of fit.
splineshaft

Disc brake mounting interfaces

A spline coupling for disc brake mounting interfaces is a type of hub-to-brake-disc mount. It is a highly durable coupling mechanism that reduces heat transfer from the disc to the axle hub. The mounting arrangement also isolates the axle hub from direct contact with the disc. It is also designed to minimize the amount of vehicle downtime and maintenance required to maintain proper alignment.
Disc brakes typically have substantial metal-to-metal contact with axle hub splines. The discs are held in place on the hub by intermediate inserts. This metal-to-metal contact also aids in the transfer of brake heat from the brake disc to the axle hub. Spline coupling for disc brake mounting interfaces comprises a mounting ring that is either a threaded or non-threaded spline.
During drag brake experiments, perforated friction blocks filled with various additive materials are introduced. The materials included include Cu-based powder metallurgy material, a composite material, and a Mn-Cu damping alloy. The filling material affects the braking interface’s wear behavior and friction-induced vibration characteristics. Different filling materials produce different types of wear debris and have different wear evolutions. They also differ in their surface morphology.
Disc brake couplings are usually made of 2 different types. The plain and HD versions are interchangeable. The plain version is the simplest to install, while the HD version has multiple components. The two-piece couplings are often installed at the same time, but with different mounting interfaces. You should make sure to purchase the appropriate coupling for your vehicle. These interfaces are a vital component of your vehicle and must be installed correctly for proper operation.
Disc brakes use disc-to-hub elements that help locate the forces and displace them to the rim. These elements are typically made of stainless steel, which increases the cost of manufacturing the disc brake mounting interface. Despite their benefits, however, the high braking force loads they endure are hard on the materials. Moreover, excessive heat transferred to the intermediate elements can adversely affect the fatigue life and long-term strength of the brake system.

China best Car Sunshade Frame Automatic 2D Metal Wire Bending Machinery Wire Bender   near me factory China best Car Sunshade Frame Automatic 2D Metal Wire Bending Machinery Wire Bender   near me factory

China Hot selling Cheap Car Hoops Cold Roll Forming Barrel Hoop Making Machinery near me supplier

Product Description

Cheap Car Hoops Cold Roll Forming Barrel Hoop Making Machinery

Product Description

Form: High-precision CZPT column bracket gear chain drive(inverter motor control)

Function and structure:  sheet will from through 8 rollers, and gradually roll into the finished bracket. By the variable frequency motor, reducer, gear, roller group composition. The lathe with welded structure, to stress treatment;

The roller adopts the combination structure, the speed difference and the forming resistance are small, the steel surface wear is small; the roll process design uses the imported software, the computer design, and carries on the FEA analysis, guarantees the piece shape precision, does not scratch the sheet material. Roller with Cr12MoV forging, the overall quenching CNC machining, hardness uptoHRC58-62; with high strength, high hardness, high precision, using life and so on.

Quick change structure

Pass pitch: 200mm

Rack:Precision CZPT column bracket

Roll shaft diameter:45mm

Material: 42CrMo

Lubrication system

No  Equipment Name Quantity

Motor Power

(KW)

 

1 Automatic Uncoiler 1 set 3
2 Precise leveling machine 1set 1.5
3 Roll Forming Machine 1set 15
4  Bending, cut off 1set  5

 

No Item Brand
1 PLC OMRON
2 HMI OMRON
3 Electric Elements Schneider/OMRON/ Keyence/ Siko
4 Bearing Timken,Schaeffler
5 Variable frequency motor SIEMENS
6 Rotary encoder OMRON
7 Digital position display SIKO

 

Company Information

FAQ

1.Q: Are you manufacturer or trading company?

A: We are manufacture and trading company.

2.Q:What info you need before you make the proposal?

A:The pipe diameter and thickness range which you need or the profile drawings, material information, your special requirements.

3.Q: What is the MOQ?

A: One set

4.Q: Do you provide installing and debugging overseas?

A: Overseas machine install and worker training services are optional.

5.Q: Can you make the machine according to my design or prototype?

A: Yes, we have an experienced team for working out the most suitable design and production plan for the machine that you are going to book with us.

6.Q: How does your factory do regarding quality control?

A :There is no tolerance regarding quality control. Quality control complies with ISO 9001.every machine has to past testing running before it’s packed for shipment.

7.Q: How can I trust you that machines pasted testing running before shipping?

A: 1) We record the testing video for your reference

2) We welcome you visit us and test machine by yourself in our factory.

8.Q: What about our after-sale service?

A: we provide technical support on line as well as overseas services by skillful technicians.

9.Q: What should I do if I just start a new business?

A:Contact us immediately ,we provide free consultant pre-sales service.Also we can help you to solve the material(steel coil)purchase,worker train,international market price.

10. Q:Can I visit you factory to check machines on-site ? What Should I bring when I visit your factory?

A: We are manufacturer, and we welcome customers to visit our factory. For special product design and develop, we request you bring a piece of testing material, you can test on our machines on-site.

 

Warmly welcome to visit our factory CZPT Machinery

 

Screw Shaft Features Explained

When choosing the screw shaft for your application, you should consider the features of the screws: threads, lead, pitch, helix angle, and more. You may be wondering what these features mean and how they affect the screw’s performance. This article explains the differences between these factors. The following are the features that affect the performance of screws and their properties. You can use these to make an informed decision and purchase the right screw. You can learn more about these features by reading the following articles.

Threads

The major diameter of a screw thread is the larger of the 2 extreme diameters. The major diameter of a screw is also known as the outside diameter. This dimension can’t be directly measured, but can be determined by measuring the distance between adjacent sides of the thread. In addition, the mean area of a screw thread is known as the pitch. The diameter of the thread and pitch line are directly proportional to the overall size of the screw.
The threads are classified by the diameter and pitch. The major diameter of a screw shaft has the largest number of threads; the smaller diameter is called the minor diameter. The thread angle, also known as the helix angle, is measured perpendicular to the axis of the screw. The major diameter is the largest part of the screw; the minor diameter is the lower end of the screw. The thread angle is the half distance between the major and minor diameters. The minor diameter is the outer surface of the screw, while the top surface corresponds to the major diameter.
The pitch is measured at the crest of a thread. In other words, a 16-pitch thread has a diameter of 1 sixteenth of the screw shaft’s diameter. The actual diameter is 0.03125 inches. Moreover, a large number of manufacturers use this measurement to determine the thread pitch. The pitch diameter is a critical factor in successful mating of male and female threads. So, when determining the pitch diameter, you need to check the thread pitch plate of a screw.
screwshaft

Lead

In screw shaft applications, a solid, corrosion-resistant material is an important requirement. Lead screws are a robust choice, which ensure shaft direction accuracy. This material is widely used in lathes and measuring instruments. They have black oxide coatings and are suited for environments where rusting is not acceptable. These screws are also relatively inexpensive. Here are some advantages of lead screws. They are highly durable, cost-effective, and offer high reliability.
A lead screw system may have multiple starts, or threads that run parallel to each other. The lead is the distance the nut travels along the shaft during a single revolution. The smaller the lead, the tighter the thread. The lead can also be expressed as the pitch, which is the distance between adjacent thread crests or troughs. A lead screw has a smaller pitch than a nut, and the smaller the lead, the greater its linear speed.
When choosing lead screws, the critical speed is the maximum number of revolutions per minute. This is determined by the minor diameter of the shaft and its length. The critical speed should never be exceeded or the lead will become distorted or cracked. The recommended operational speed is around 80 percent of the evaluated critical speed. Moreover, the lead screw must be properly aligned to avoid excessive vibrations. In addition, the screw pitch must be within the design tolerance of the shaft.

Pitch

The pitch of a screw shaft can be viewed as the distance between the crest of a thread and the surface where the threads meet. In mathematics, the pitch is equivalent to the length of 1 wavelength. The pitch of a screw shaft also relates to the diameter of the threads. In the following, the pitch of a screw is explained. It is important to note that the pitch of a screw is not a metric measurement. In the following, we will define the 2 terms and discuss how they relate to 1 another.
A screw’s pitch is not the same in all countries. The United Kingdom, Canada, and the United States have standardized screw threads according to the UN system. Therefore, there is a need to specify the pitch of a screw shaft when a screw is being manufactured. The standardization of pitch and diameter has also reduced the cost of screw manufacturing. Nevertheless, screw threads are still expensive. The United Kingdom, Canada, and the United States have introduced a system for the calculation of screw pitch.
The pitch of a lead screw is the same as that of a lead screw. The diameter is 0.25 inches and the circumference is 0.79 inches. When calculating the mechanical advantage of a screw, divide the diameter by its pitch. The larger the pitch, the more threads the screw has, increasing its critical speed and stiffness. The pitch of a screw shaft is also proportional to the number of starts in the shaft.

Helix angle

The helix angle of a screw shaft is the angle formed between the circumference of the cylinder and its helix. Both of these angles must be equal to 90 degrees. The larger the lead angle, the smaller the helix angle. Some reference materials refer to angle B as the helix angle. However, the actual angle is derived from calculating the screw geometry. Read on for more information. Listed below are some of the differences between helix angles and lead angles.
High helix screws have a long lead. This length reduces the number of effective turns of the screw. Because of this, fine pitch screws are usually used for small movements. A typical example is a 16-mm x 5-inch screw. Another example of a fine pitch screw is a 12x2mm screw. It is used for small moves. This type of screw has a lower lead angle than a high-helix screw.
A screw’s helix angle refers to the relative angle of the flight of the helix to the plane of the screw axis. While screw helix angles are not often altered from the standard square pitch, they can have an effect on processing. Changing the helix angle is more common in two-stage screws, special mixing screws, and metering screws. When a screw is designed for this function, it should be able to handle the materials it is made of.
screwshaft

Size

The diameter of a screw is its diameter, measured from the head to the shaft. Screw diameters are standardized by the American Society of Mechanical Engineers. The diameters of screws range from 3/50 inches to 16 inches, and more recently, fractions of an inch have been added. However, shaft diameters may vary depending on the job, so it is important to know the right size for the job. The size chart below shows the common sizes for screws.
Screws are generally referred to by their gauge, which is the major diameter. Screws with a major diameter less than a quarter of an inch are usually labeled as #0 to #14 and larger screws are labeled as sizes in fractions of an inch. There are also decimal equivalents of each screw size. These measurements will help you choose the correct size for your project. The screws with the smaller diameters were not tested.
In the previous section, we described the different shaft sizes and their specifications. These screw sizes are usually indicated by fractions of an inch, followed by a number of threads per inch. For example, a ten-inch screw has a shaft size of 2” with a thread pitch of 1/4″, and it has a diameter of 2 inches. This screw is welded to a two-inch Sch. 40 pipe. Alternatively, it can be welded to a 9-inch O.A.L. pipe.
screwshaft

Shape

Screws come in a wide variety of sizes and shapes, from the size of a quarter to the diameter of a U.S. quarter. Screws’ main function is to hold objects together and to translate torque into linear force. The shape of a screw shaft, if it is round, is the primary characteristic used to define its use. The following chart shows how the screw shaft differs from a quarter:
The shape of a screw shaft is determined by 2 features: its major diameter, or distance from the outer edge of the thread on 1 side to the inner smooth surface of the shaft. These are generally 2 to 16 millimeters in diameter. Screw shafts can have either a fully threaded shank or a half-threaded shank, with the latter providing better stability. Regardless of whether the screw shaft is round or domed, it is important to understand the different characteristics of a screw before attempting to install it into a project.
The screw shaft’s diameter is also important to its application. The ball circle diameter refers to the distance between the center of 2 opposite balls in contact with the grooves. The root diameter, on the other hand, refers to the distance between the bottommost grooves of the screw shaft. These are the 2 main measurements that define the screw’s overall size. Pitch and nominal diameter are important measurements for a screw’s performance in a particular application.

Lubrication

In most cases, lubrication of a screw shaft is accomplished with grease. Grease is made up of mineral or synthetic oil, thickening agent, and additives. The thickening agent can be a variety of different substances, including lithium, bentonite, aluminum, and barium complexes. A common classification for lubricating grease is NLGI Grade. While this may not be necessary when specifying the type of grease to use for a particular application, it is a useful qualitative measure.
When selecting a lubricant for a screw shaft, the operating temperature and the speed of the shaft determine the type of oil to use. Too much oil can result in heat buildup, while too little can lead to excessive wear and friction. The proper lubrication of a screw shaft directly affects the temperature rise of a ball screw, and the life of the assembly. To ensure the proper lubrication, follow the guidelines below.
Ideally, a low lubrication level is appropriate for medium-sized feed stuff factories. High lubrication level is appropriate for larger feed stuff factories. However, in low-speed applications, the lubrication level should be sufficiently high to ensure that the screws run freely. This is the only way to reduce friction and ensure the longest life possible. Lubrication of screw shafts is an important consideration for any screw.

China Hot selling Cheap Car Hoops Cold Roll Forming Barrel Hoop Making Machinery   near me supplier China Hot selling Cheap Car Hoops Cold Roll Forming Barrel Hoop Making Machinery   near me supplier

China manufacturer 2.5 Ton Underground Mining Battery Locomotive Machine Machinery Equipment Electric Battery Mining Locomotive near me supplier

Product Description

 

Product Description

2.5 Ton Underground Mining Battery Locomotive, Electric Battery Mining Locomotive 
HangZhou CZPT battery electric locomotive is a kind of track traction equipment powered by batteries, which is generally used in mines. There are 2 types of battery electric locomotives, explosion-proof type and ordinary type. The explosion-proof type is mainly used in coal mines. There are also many options in terms of speed regulation and braking methods. Speed control methods include resistance speed control, chopping speed control and frequency conversion speed control. Braking methods include pure mechanical braking, hydraulic braking and compressed air braking. In addition, electric braking can also be selected as an auxiliary braking method.

  Adhesive / total weight (t) 2.5
Track gauge (mm) 600,762 or 900
Traction (KN) 2.55
Max. Traction (KN) 6.13
Speed(km/h) 4.54
Battery Voltage (V) 48
Battery Capacity (Ah) 330
Power (KW) 3.5*1
Dimensions Length(mm) 2360
Width(mm) 914,1076 or 1214
Height(mm) 1550
Wheelbase (mm) 650
Wheel diameter (mm) 460
Min Curve radius (m) 5
Controller Resistance or IGBT
Braking method Mechanical Brake

Locomotive Spareparts

 

Detailed Photos

Advantages of our product

1.Using high-quality steel plates, special rust removal process make sure it more anti-corrosion and suitable for harsh mining environment.
2. Producing motors ourselves, using high lever insulation material and pure copper, ensure the powerful traction force, and suitable for harsh mining environment.
3.Gear anastomosis surface to reach more than 80%, which is far more exceeding the standard.
4.Professionally designed and adjusted frame ensure safe driving and avoids falling off rails.
5.A variety of braking methods can be choose, air brake, hydraulic brake, electric brake, mechanical brake to ensure the safety drive.
6. 40 years richful experience with the ability to design and make customized product according to your requirements.
7. Proving factory online-visiting

 

Product Factory Test

Mining Locomotive test
1.Before Running the locomotive,carry out gear debugging, lighting, gear, and brake adjustment etc.To ensure the normal operation of the locomotive.
2.Carry out a tensile test before leaving the factory to ensure the load performance of the locomotive meets the standard. Our design standards generally exceed the national standard by 10%-20%.
3.Carry out different type running test before leaving the factory to ensure the performance and normal operation of the whole locomotive. It can adapt to various harsh conditions under simulated working conditions.

Motor test
The motor has to go through many inspection procedures before leaving the factory, and each motor has to be carried out with load running experiments.
Explosion-proof motors are carried out with water pressure test.
All the test of motor is to ensure that can adapt to harsh working conditions.

Clients Feedback and Cases

1. A good feedback of our lithium battery locomotive from a client of Latin America
2. In order to solve the exist problems of lead-acid batteries. More than 30 lead-acid battery electric locomotives in this large mining were changed into lithium battery electric locomotives, which improved the work enthusiasm and production efficiency of employees, reduced costs,and more environment-friendly.
3. The mining rock drill car designed by Sunward Co., has a small size and simple structure, so the space for placing the lithium battery on the body is very limited.
According to the limitation size, our company design a lithium power supply power plan, which
perfectly solves the problem of lithium power supply space.
In order to adapt to the special industrial and mining environment and improve transportation efficiency, a batch of 2.5-ton lithium battery electric locomotives are designed to Myanmar Clients.

Company Profile

 

FAQ

Whats your product advantages?

We have more 40 years experience in this field so that we could design or produce the locomotive as your requirement. We could also provide online service to teach you how to operate and maintain the locomotive. 

The most important thing that we produce the main part of the locomotive- The traction motors. we could guarante the power of the locomotive.

Pre-sales Service:

The wide product range enables us to provide our customers with individual machines or complete processing plants. Based on our customer’s request and budget, our experts make efficient and reliable solutions, and we produce strictly follow customers’ order. What’s more, every customer has the chance to visit the working machine in the site before placing the order. 
After-sales Service:
Experienced technicians guidance is available on the phone, and on the internet. One or more engineers will be dispatched to the quarry site to help install the customer’s plants.Necessary training about machine daily maintenance to local workers is provided also.

Methods of Payment:

 T/T (Telegraphic Transfer) or Western Union or L/C at sight
Handling time for an order:
Within 10 days supplied from stock
Shipping method:
Sample order: we suggest Courier express like DHL/UPS/TNT/FEDEX or by air
Bulk order: we suggest by air or by sea.
Quality Control:
We have our own experienced QC.
There will be strict inspection and testing for every order before shipping out.
After Services:
a. Our sales team will response for your question within 24 hours (Holiday is Excluded)
b. Technical Support will be available in any time
c. Free replacement will provide once the failure confirmed caused by our product quality

The 5 components of an axle, their function and installation

If you’re considering replacing an axle in your vehicle, you should first understand what it is. It is the component that transmits electricity from 1 part to another. Unlike a fixed steering wheel, the axles are movable. The following article will discuss the 5 components of the half shaft, their function and installation. Hopefully you were able to identify the correct axle for your vehicle. Here are some common problems you may encounter along the way.
Driveshaft

five components

The 5 components of the shaft are flange, bearing surface, spline teeth, spline pitch and pressure angle. The higher the number of splines, the stronger the shaft. The maximum stress that the shaft can withstand increases with the number of spline teeth and spline pitch. The diameter of the shaft times the cube of the pressure angle and spline pitch determines the maximum stress the shaft can withstand. For extreme load applications, use axles made from SAE 4340 and SAE 1550 materials. In addition to these 2 criteria, spline rolling produces a finer grain structure in the material. Cutting the splines reduces the strength of the shaft by 30% and increases stress.
The asymmetric length of the shaft implies different torsional stiffness. A longer shaft, usually the driver’s side, can handle more twist angles before breaking. When the long axis is intact, the short axis usually fails, but this does not always happen. Some vehicles have short axles that permanently break, causing the same failure rate for both. It would be ideal if both shafts were the same length, they would share the same load.
In addition to the spline pitch, the diameter of the shaft spline is another important factor. The small diameter of a spline is the radius at which it resists twisting. Therefore, the splines must be able to absorb shock loads and shocks while returning to their original shape. To achieve these goals, the spline pitch should be 30 teeth or less, which is standard on Chrysler 8.75-inch and GM 12-bolt axles. However, a Ford 8.8-inch axle may have 28 or 31 tooth splines.
In addition to the CV joints, the axles also include CV joints, which are located on each end of the axle. ACV joints, also known as CV joints, use a special type of bearing called a pinion. This is a nut that meshes with the side gear to ensure proper shaft alignment. If you notice a discrepancy, take your car to a shop and have it repaired immediately.

Function

Axles play several important roles in a vehicle. It transfers power from the transmission to the rear differential gearbox and the wheels. The shaft is usually made of steel with cardan joints at both ends. Shaft Shafts can be stationary or rotating. They are all creatures that can transmit electricity and loads. Here are some of their functions. Read on to learn more about axles. Some of their most important features are listed below.
The rear axle supports the weight of the vehicle and is connected to the front axle through the axle. The rear axle is suspended from the body, frame and axle housing, usually spring loaded, to cushion the vehicle. The driveshaft, also called the propshaft, is located between the rear wheels and the differential. It transfers power from the differential to the drive wheels.
The shaft is made of mild steel or alloy steel. The latter is stronger, more corrosion-resistant and suitable for special environments. Forged for large diameter shafts. The cross section of the shaft is circular. While they don’t transmit torque, they do transmit bending moment. This allows the drive train to rotate. If you’re looking for new axles, it’s worth learning more about how they work.
The shaft consists of 3 distinct parts: the main shaft and the hub. The front axle assembly has a main shaft, while the rear axle is fully floating. Axles are usually made of chrome molybdenum steel. The alloy’s chromium content helps the axle maintain its tensile strength even under extreme conditions. These parts are welded into the axle housing.
Driveshaft

Material

The material used to make the axle depends on the purpose of the vehicle. For example, overload shafts are usually made of SAE 4340 or 1550 steel. These steels are high strength low alloy alloys that are resistant to bending and buckling. Chromium alloys, for example, are made from steel and have chromium and molybdenum added to increase their toughness and durability.
The major diameter of the shaft is measured at the tip of the spline teeth, while the minor diameter is measured at the bottom of the groove between the teeth. These 2 diameters must match, otherwise the half shaft will not work properly. It is important to understand that the brittleness of the material should not exceed what is required to withstand normal torque and twisting, otherwise it will become unstable. The material used to make the axles should be strong enough to carry the weight of a heavy truck, but must also be able to withstand torque while still being malleable.
Typically, the shaft is case hardened using an induction process. Heat is applied to the surface of the steel to form martensite and austenite. The shell-core interface transitions from compression to tension, and the peak stress level depends on the process variables used, including heating time, residence time, and hardenability of the steel. Some common materials used for axles are listed below. If you’re not sure which material is best for your axle, consider the following guide.
The axle is the main component of the axle and transmits the transmission motion to the wheels. In addition, they regulate the drive between the rear hub and the differential sun gear. The axle is supported by axle bearings and guided to the path the wheels need to follow. Therefore, they require proper materials, processing techniques and thorough inspection methods to ensure lasting performance. You can start by selecting the material for the shaft.
Choosing the right alloy for the axle is critical. You will want to find an alloy with a low carbon content so it can harden to the desired level. This is an important consideration because the hardenability of the alloy is important to the durability and fatigue life of the axle. By choosing the right alloy, you will be able to minimize these problems and improve the performance of your axle. If you have no other choice, you can always choose an alloy with a higher carbon content, but it will cost you more money.
Driveshaft

Install

The process of installing a new shaft is simple. Just loosen the axle nut and remove the set bolt. You may need to tap a few times to get a good seal. After installation, check the shaft at the points marked “A” and “D” to make sure it is in the correct position. Then, press the “F” points on the shaft flange until the points are within 0.002″ of the runout.
Before attempting to install the shaft, check the bearings to make sure they are aligned. Some bearings may have backlash. To determine the amount of differential clearance, use a screwdriver or clamp lever to check. Unless it’s caused by a loose differential case hub, there shouldn’t be any play in the axle bearings. You may need to replace the differential case if the axles are not mounted tightly. Thread adjusters are an option for adjusting drive gear runout. Make sure the dial indicator is mounted on the lead stud and loaded so that the plunger is at right angles to the drive gear.
To install the axle, lift the vehicle with a jack or crane. The safety bracket should be installed under the frame rails. If the vehicle is on a jack, the rear axle should be in the rebound position to ensure working clearance. Label the drive shaft assemblies and reinstall them in their original positions. Once everything is back in place, use a 2-jaw puller to pry the yoke and flange off the shaft.
If you’ve never installed a half shaft before, be sure to read these simple steps to get it right. First, check the bearing surfaces to make sure they are clean and undamaged. Replace them if they look battered or dented. Next, remove the seal attached to the bushing hole. Make sure the shaft is installed correctly and the bearing surfaces are level. After completing the installation process, you may need to replace the bearing seals.

China manufacturer 2.5 Ton Underground Mining Battery Locomotive Machine Machinery Equipment Electric Battery Mining Locomotive   near me supplier China manufacturer 2.5 Ton Underground Mining Battery Locomotive Machine Machinery Equipment Electric Battery Mining Locomotive   near me supplier