Tag Archives: steel machine

China high quality Competitive Price Fiber Laser Aluminum Carbon Steel Cutting Machine with Great quality

Product Description

Competitive Price Fiber Laser Aluminum Carbon Steel Cutting Machine

RJ Fiber Laser Cutting Machine is equipped with ZheJiang industrial level HIWIN rail and YYC rack, Japanese servo motors and flange output planetary reducer, guaranteeing the machine with robust performance and long lifetime more than 10 years.

 

Competitive Price Fiber Laser Aluminum Carbon Steel Cutting Machine
Model RJ-3015HT/4571HT/6571HT
Working Size 3050*1530mm/4050*2000mm/6050*2000mmmm
Rotary Length 3000mm/6000mm
Rotary Diameter 15-215mm
Laser Type Standard Raycus(Optional Imported Optical Fiber Laser Generator)
Laser Power 1000W-6000W
Laser Wavelength 1070±10nm
Cutting Thickness 0-20mm
Max. Cutting Speed 70m/min
Positioning Accuracy ±0.03
Repeat Positioning Accuracy ±0.03
Max. Acceleration 1.2G
Driving System Japan CZPT Servo motor and drivers
Cooling System water cooling
Working Voltage AC220V/110V±10% 50Hz/60Hz AC380V 3PH 50Hz/60Hz
The working area and laser power can be customized according to customer’s needs.

 

Fiber Laser Cutting Machine applied in sheet metal processing, die-cutting, electronic, electrical appliance, aviation, mechanical, elevator, cars, steamer, cutting tool, subway accessories, petroleum machinery, food machinery, craft gifts, tools processing, decoration, advertisement, metal external processing and other manufacturers.
High Productivity Metal Fiber Laser Cutting Machine specially used for cutting 0.5-30mm carbon steel sheets(pipes), 0.5-15mm stainless steel sheets, galvanized steel(pipes), electrolytic zinc-coated steel sheet(pipes), silicon steel (pipes) and other kinds of thin metal sheets and pipes. Range of pipe diameters: 20-220mm.

HangZhou Ruijie Fiber Laser Cutting Machine adopts international advanced 500w/1000w/2000w/3000w power fiber laser from IPG, or Raycus from China, imported high precision ball screw, linear CZPT way and other high efficient and high precise drive mechanism.

The precise CNC fiber laser cutting machine integrates imported servo motor with advanced CNC system, is high new tech product with a collection made of laser cutting, precise machinery, CNC technology, and other subjects. It is applied for cutting and shaping of carton steel plate, stainless steel plate, aluminum plate and other metal materials. With high speed, high precision, high efficiency, high cost performance and other features, it’s the first choice in cutting machines for industries metal processing.

Relaying on cooperative R&D and promoting high-tech, high quality products, Ruijie has been committed to researching and manufacturing CNC products in the filed of laser, advertising and wood router. With the striving spirit of determination and sharing, and the service aim of prestige first, service first, Ruijie is developing steadily and sustainably.

Packaging: Laser Cutting Machine will be packed by 2 layers. First the plastic air bubble wrap the machine, product the Laser Cutting Machine from be scratched or other unexpected damage, the wrapped product will be packed in plywood case.

Shipping: ZheJiang , HangZhou, ZheJiang , HangZhou, HangZhou, etc. We accept land, air, sea transport and international multimodal transport.

We have 20-years professional focused on laser cutting machine and service more than 150 countries and areas. As the sale in China, our products exports around the world including Southeast, Middle East, Africa, European and U.S.A.

1. 24 months quality guaranty, the machine with main parts(excluding the consumables) shall be changed free of charge, if there is any problem during the warranty period.
2. Lifetime maintenance free of charge.
3. Free training course at our plant.
4. We will provide the consumable parts at an agency price when you need replacement.
5. 24 hours on line service each day, free technical support.
6. Machine has been adjusted before delivery.
7. Our staff can be sent to your company to install or adjust if necessary.

FAQ:
Q1: How long is the warranty time of the machine?
A1: 1 year.

Q2: What is the delivery time of the machine?
A2: 17 working days after receive the deposit.

Q3: Does the company provide OEM services?
A3: Yes, our company provide OEM services and we have 20 years experienced.

Q4: Do you accept an exclusive national sales agent?
A4: We accept and we are also looking for distributors around the world.

Q5: How to provide after sales service?
A5: When you buy our machine, we can train you free in our factory or we can send engineer to your factory give you a 7 days training, so you can quickly put the machine into service. The training included: to Learn the basic operation engraving machine, to understand the use of various functions of carving machine, to maintain normal running of the engraving machine operation. We can provide 1 year free on-site maintenance service and long-term maintenance service.

Q6: How to transport and how long is the transportation time?
A6: CZPT Shipping, Air Shipping, Courier Shipping.

 

Different parts of the drive shaft

The driveshaft is the flexible rod that transmits torque between the transmission and the differential. The term drive shaft may also refer to a cardan shaft, a transmission shaft or a propeller shaft. Parts of the drive shaft are varied and include:
The driveshaft is a flexible rod that transmits torque from the transmission to the differential

When the driveshaft in your car starts to fail, you should seek professional help as soon as possible to fix the problem. A damaged driveshaft can often be heard. This noise sounds like “tak tak” and is usually more pronounced during sharp turns. However, if you can’t hear the noise while driving, you can check the condition of the car yourself.
The drive shaft is an important part of the automobile transmission system. It transfers torque from the transmission to the differential, which then transfers it to the wheels. The system is complex, but still critical to the proper functioning of the car. It is the flexible rod that connects all other parts of the drivetrain. The driveshaft is the most important part of the drivetrain, and understanding its function will make it easier for you to properly maintain your car.
Driveshafts are used in different vehicles, including front-wheel drive, four-wheel drive, and front-engine rear-wheel drive. Drive shafts are also used in motorcycles, locomotives and ships. Common front-engine, rear-wheel drive vehicle configurations are shown below. The type of tube used depends on the size, speed and strength of the drive shaft.
The output shaft is also supported by the output link, which has 2 identical supports. The upper part of the drive module supports a large tapered roller bearing, while the opposite flange end is supported by a parallel roller bearing. This ensures that the torque transfer between the differentials is efficient. If you want to learn more about car differentials, read this article.
air-compressor

It is also known as cardan shaft, propeller shaft or drive shaft

A propshaft or propshaft is a mechanical component that transmits rotation or torque from an engine or transmission to the front or rear wheels of a vehicle. Because the axes are not directly connected to each other, it must allow relative motion. Because of its role in propelling the vehicle, it is important to understand the components of the driveshaft. Here are some common types.
Isokinetic Joint: This type of joint guarantees that the output speed is the same as the input speed. To achieve this, it must be mounted back-to-back on a plane that bisects the drive angle. Then mount the 2 gimbal joints back-to-back and adjust their relative positions so that the velocity changes at 1 joint are offset by the other joint.
Driveshaft: The driveshaft is the transverse shaft that transmits power to the front wheels. Driveshaft: The driveshaft connects the rear differential to the transmission. The shaft is part of a drive shaft assembly that includes a drive shaft, a slip joint, and a universal joint. This shaft provides rotational torque to the drive shaft.
Dual Cardan Joints: This type of driveshaft uses 2 cardan joints mounted back-to-back. The center yoke replaces the intermediate shaft. For the duplex universal joint to work properly, the angle between the input shaft and the output shaft must be equal. Once aligned, the 2 axes will operate as CV joints. An improved version of the dual gimbal is the Thompson coupling, which offers slightly more efficiency at the cost of added complexity.
air-compressor

It transmits torque at different angles between driveline components

A vehicle’s driveline consists of various components that transmit power from the engine to the wheels. This includes axles, propshafts, CV joints and differentials. Together, these components transmit torque at different angles between driveline components. A car’s powertrain can only function properly if all its components work in harmony. Without these components, power from the engine would stop at the transmission, which is not the case with a car.
The CV driveshaft design provides smoother operation at higher operating angles and extends differential and transfer case life. The assembly’s central pivot point intersects the joint angle and transmits smooth rotational power and surface speed through the drivetrain. In some cases, the C.V. “U” connector. Drive shafts are not the best choice because the joint angles of the “U” joints are often substantially unequal and can cause torsional vibration.
Driveshafts also have different names, including driveshafts. A car’s driveshaft transfers torque from the transmission to the differential, which is then distributed to other driveline components. A power take-off (PTO) shaft is similar to a prop shaft. They transmit mechanical power to connected components. They are critical to the performance of any car. If any of these components are damaged, the entire drivetrain will not function properly.
A car’s powertrain can be complex and difficult to maintain. Adding vibration to the drivetrain can cause premature wear and shorten overall life. This driveshaft tip focuses on driveshaft assembly, operation, and maintenance, and how to troubleshoot any problems that may arise. Adding proper solutions to pain points can extend the life of the driveshaft. If you’re in the market for a new or used car, be sure to read this article.

it consists of several parts

“It consists of several parts” is 1 of 7 small prints. This word consists of 10 letters and is 1 of the hardest words to say. However, it can be explained simply by comparing it to a cow’s kidney. The cocoa bean has several parts, and the inside of the cocoa bean before bursting has distinct lines. This article will discuss the different parts of the cocoa bean and provide a fun way to learn more about the word.
air-compressor

Replacement is expensive

Replacing a car’s driveshaft can be an expensive affair, and it’s not the only part that needs servicing. A damaged drive shaft can also cause other problems. This is why getting estimates from different repair shops is essential. Often, a simple repair is cheaper than replacing the entire unit. Listed below are some tips for saving money when replacing a driveshaft. Listed below are some of the costs associated with repairs:
First, learn how to determine if your vehicle needs a driveshaft replacement. Damaged driveshaft components can cause intermittent or lack of power. Additionally, improperly installed or assembled driveshaft components can cause problems with the daily operation of the car. Whenever you suspect that your car needs a driveshaft repair, seek professional advice. A professional mechanic will have the knowledge and experience needed to properly solve the problem.
Second, know which parts need servicing. Check the u-joint bushing. They should be free of crumbs and not cracked. Also, check the center support bearing. If this part is damaged, the entire drive shaft needs to be replaced. Finally, know which parts to replace. The maintenance cost of the drive shaft is significantly lower than the maintenance cost. Finally, determine if the repaired driveshaft is suitable for your vehicle.
If you suspect your driveshaft needs service, make an appointment with a repair shop as soon as possible. If you are experiencing vibration and rough riding, driveshaft repairs may be the best way to prevent costly repairs in the future. Also, if your car is experiencing unusual noise and vibration, a driveshaft repair may be a quick and easy solution. If you don’t know how to diagnose a problem with your car, you can take it to a mechanic for an appointment and a quote.

China high quality Competitive Price Fiber Laser Aluminum Carbon Steel Cutting Machine   with Great qualityChina high quality Competitive Price Fiber Laser Aluminum Carbon Steel Cutting Machine   with Great quality

China Professional Low Cost Metal Sheet Plate Steel Round Pipe Profile 5 Axis CNC Plasma Cutting Machine with Free Design Custom

Product Description

CNC Pipe and Sheet Plasma Cutting Machine

can cut metal plate and metal pipe.

Main Features

1.Good Working stability, high frequency interfere effectively plasma, lightweight portable;
2.Support 2 cutting ways of flame and plasma;
3.Economic benefits, the structure and design is contracted. it adopts humanistic positive man-machine conversation and operate easily;
4.Cutting has high quality, high effect level, high precision;
5.Programmable cutting arbitrary shape parts of line and arc;
6.Dynamic and static graphic display, easy to learn. 
Can convert CAD file to program file in computer, through USB flash drive transmits to machine to realize cutting all kinds’ graphs. 
And also can program and operate directly on the machine.
7.English and Chinese interface can free to convert;
8.Pre-sale will train and after-sale will track service.

Application

  • Applicable Industry:
    Mechanical & Electrical equipment, stainless steel products, construction & decoration industry, billboard, sheet metal structure, high-low voltage electric cabinet, kitchenware, car accessories, saw bits, precision metal parts, metal art-ware, etc.
  • Applicable Materials:
    Stainless steel sheet & hollow pipe, Carbon steel sheet & hollow pipe, Stainless Iron sheet & hollow pipe, Galvanized sheet & hollow pipe, Manganese steel, Electrolytic plate, Aluminum alloy, Titanium alloy, Titanium alloy, Aluminum Brass, Rare metal, etc.

 Parameter 

Model Parameter

CNC pipe and plate plasma cutting machine 

Model

  1325

  1530

   2040

Working size

1300*2500mm

1500*3000mm

2000*4000mm

Rang of pipe diamter (Diameter)
 
30-400 mm 

Three axes Repeat positioning accuracy

±0.05mm

Process precision 

±0.35mm

Transmission system

X,Y ZheJiang  AMT high-precision,zero clearance increased linear guide+ rack

Z the arc voltage control

 cutting speed

V ≤2000mm/min  

Working voltage     

AC380/50HZ        

Control system

ZheJiang  START plasma cutting system

Standard high sensitivity arc voltage device

Software support

FASTCAM,AutoCAD and else 

Instruction format

G code

Drive system

Stepper motor (Optional ZheJiang  AC servo motor)

Plasma power

Domestic Xihu (West Lake) Dis. 60A-200A

Imported US Powermax 60A-000A

Power cutting ability

Domestic Xihu (West Lake) Dis. 0.5-35mm

US Powermax series 0.5-35mm

Moving speed 

V = 10-2000 mm/ min 

 

 

Screw Shaft Types and Uses

Various uses for the screw shaft are numerous. Its major diameter is the most significant characteristic, while other aspects include material and function are important. Let us explore these topics in more detail. There are many different types of screw shafts, which include bronze, brass, titanium, and stainless steel. Read on to learn about the most common types. Listed below are some of the most common uses for a screw shaft. These include: C-clamps, screw jacks, vises, and more.
screwshaft

Major diameter of a screw shaft

A screw’s major diameter is measured in fractions of an inch. This measurement is commonly found on the screw label. A screw with a major diameter less than 1/4″ is labeled #0 to #14; those with a larger diameter are labeled fractions of an inch in a corresponding decimal scale. The length of a screw, also known as the shaft, is another measure used for the screw.
The major diameter of a screw shaft is the greater of its 2 outer diameters. When determining the major diameter of a screw, use a caliper, micrometer, or steel rule to make an accurate measurement. Generally, the first number in the thread designation refers to the major diameter. Therefore, if a screw has a thread of 1/2-10 Acme, the major diameter of the thread is.500 inches. The major diameter of the screw shaft will be smaller or larger than the original diameter, so it’s a good idea to measure the section of the screw that’s least used.
Another important measurement is the pitch. This measures the distance between 1 thread’s tip and the next thread’s corresponding point. Pitch is an important measurement because it refers to the distance a screw will advance in 1 turn. While lead and pitch are 2 separate concepts, they are often used interchangeably. As such, it’s important to know how to use them properly. This will make it easier to understand how to select the correct screw.
There are 3 different types of threads. The UTS and ISO metric threads are similar, but their common values for Dmaj and Pmaj are different. A screw’s major diameter is the largest diameter, while the minor diameter is the lowest. A nut’s major diameter, or the minor diameter, is also called the nut’s inside diameter. A bolt’s major diameter and minor diameter are measured with go/no-go gauges or by using an optical comparator.
The British Association and American Society of Mechanical Engineers standardized screw threads in the 1840s. A standard named “British Standard Whitworth” became a common standard for screw threads in the United States through the 1860s. In 1864, William Sellers proposed a new standard that simplified the Whitworth thread and had a 55 degree angle at the tip. Both standards were widely accepted. The major diameter of a screw shaft can vary from 1 manufacturer to another, so it’s important to know what size screw you’re looking for.
In addition to the thread angle, a screw’s major diameter determines the features it has and how it should be used. A screw’s point, or “thread”, is usually spiky and used to drill into an object. A flat tipped screw, on the other hand, is flat and requires a pre-drilled hole for installation. Finally, the diameter of a screw bolt is determined by the major and minor diameters.
screwshaft

Material of a screw shaft

A screw shaft is a piece of machine equipment used to move raw materials. The screw shaft typically comprises a raw material w. For a particular screw to function correctly, the raw material must be sized properly. In general, screw shafts should have an axial-direction length L equal to the moving amount k per 1/2 rotation of the screw. The screw shaft must also have a proper contact angle ph1 in order to prevent raw material from penetrating the screw shaft.
The material used for the shaft depends on its application. A screw with a ball bearing will work better with a steel shaft than 1 made of aluminum. Aluminum screw shafts are the most commonly used for this application. Other materials include titanium. Some manufacturers also prefer stainless steel. However, if you want a screw with a more modern appearance, a titanium shaft is the way to go. In addition to that, screws with a chromium finish have better wear resistance.
The material of a screw shaft is important for a variety of applications. It needs to have high precision threads and ridges to perform its function. Manufacturers often use high-precision CNC machines and lathes to create screw shafts. Different screw shafts can have varying sizes and shapes, and each 1 will have different applications. Listed below are the different materials used for screw shafts. If you’re looking for a high-quality screw shaft, you should shop around.
A lead screw has an inverse relationship between contact surface pressure and sliding velocity. For heavier axial loads, a reduced rotation speed is needed. This curve will vary depending on the material used for the screw shaft and its lubrication conditions. Another important factor is end fixity. The material of a screw shaft can be either fixed or free, so make sure to consider this factor when choosing the material of your screw. The latter can also influence the critical speed and rigidity of the screw.
A screw shaft’s major diameter is the distance between the outer edge of the thread and the inner smooth part. Screw shafts are typically between 2 and 16 millimeters in diameter. They feature a cylindrical shape, a pointy tip, and a wider head and drive than the former. There are 2 basic types of screw heads: threaded and non-threaded. These have different properties and purposes.
Lead screws are a cost-effective alternative to ball screws, and are used for low power and light to medium-duty applications. They offer some advantages, but are not recommended for continuous power transmission. But lead screws are often quieter and smaller, which make them useful for many applications. Besides, they are often used in a kinematic pair with a nut object. They are also used to position objects.
screwshaft

Function of a screw shaft

When choosing a screw for a linear motion system, there are many factors that should be considered, such as the position of the actuator and the screw and nut selection. Other considerations include the overall length of travel, the fastest move profile, the duty cycle, and the repeatability of the system. As a result, screw technology plays a critical role in the overall performance of a system. Here are the key factors to consider when choosing a screw.
Screws are designed with an external threading that digs out material from a surface or object. Not all screw shafts have complete threading, however. These are known as partially threaded screws. Fully threaded screws feature complete external threading on the shaft and a pointed tip. In addition to their use as fasteners, they can be used to secure and tighten many different types of objects and appliances.
Another factor to consider is axial force. The higher the force, the bigger the screw needs to be. Moreover, screws are similar to columns that are subject to both tension and compression loads. During the compression load, bowing or deflection is not desirable, so the integrity of the screw is important. So, consider the design considerations of your screw shaft and choose accordingly. You can also increase the torque by using different shaft sizes.
Shaft collars are also an important consideration. These are used to secure and position components on the shaft. They also act as stroke limiters and to retain sprocket hubs, bearings, and shaft protectors. They are available in several different styles. In addition to single and double split shaft collars, they can be threaded or set screw. To ensure that a screw collar will fit tightly to the shaft, the cap must not be overtightened.
Screws can be cylindrical or conical and vary in length and diameter. They feature a thread that mates with a complementary helix in the material being screwed into. A self-tapping screw will create a complementary helix during driving, creating a complementary helix that allows the screw to work with the material. A screw head is also an essential part of a screw, providing gripping power and compression to the screw.
A screw’s pitch and lead are also important parameters to consider. The pitch of the screw is the distance between the crests of the threads, which increases mechanical advantage. If the pitch is too small, vibrations will occur. If the pitch is too small, the screw may cause excessive wear and tear on the machine and void its intended purpose. The screw will be useless if it can’t be adjusted. And if it can’t fit a shaft with the required diameter, then it isn’t a good choice.
Despite being the most common type, there are various types of screws that differ in their functions. For example, a machine screw has a round head, while a truss head has a lower-profile dome. An oval-its point screw is a good choice for situations where the screw needs to be adjusted frequently. Another type is a soft nylon tip, which looks like a Half-dog point. It is used to grip textured or curved surfaces.

China Professional Low Cost Metal Sheet Plate Steel Round Pipe Profile 5 Axis CNC Plasma Cutting Machine   with Free Design CustomChina Professional Low Cost Metal Sheet Plate Steel Round Pipe Profile 5 Axis CNC Plasma Cutting Machine   with Free Design Custom

China Best Sales Good Quality Crusher Steel Eccentric Main Shaft for CZPT Crusher Machine with Great quality

Product Description

Good Quality Crusher Steel Eccentric Main Shaft for CZPT crusher machine
Cusher eccentric shaft is 1 of the most important part of crusher.The shaft drives the entire machine, so the quality of the shaft determines the quality of the entire machine.

DENP Industrial is the expert of Eccentric Main Shaft. We have earn very good reputation from our customers’ feedback in the past 10 years. And we make sure all the Eccentric Main Shaft exported by CZPT Industrial have the highest possible wear life and strong mechanical reliability.

Also we can match the parts number for famous crusher brands in International market such as Metsoo/Sandvik/Terex/Symons and so on. You are welcome to visit us to choose the ideal wear parts for your crushers.

FAQ:

Is your company an OEM factory or a trading company?

We are the manufacturer of wear parts for crushers, providing wear-resistant parts to many well-known enterprises at home and abroad. You are more than welcome to visit our factory, we will become your excellent supplier.

 

Quality?

Stable high-end products with highest possible wear life and strong mechanical reliability. CZPT brand parts are top quality products.

 

Shipment?

Try to ensure delivery a 20GP within 40 days. If the order is particularly urgent, it depends on the production plan at the time.

 

Payment?

30% T/T advanced and the balance of 70% T/T before shipping.

 

How much is the remaining capacity of your plant?

We are working hard to increase the actual production capacity to reach the theoretical capacity target of 10,000 tons per year. On the other hand, we are adjusting the production plan to try to meet the demand for quality distributors like you.

 

Why do you use a fine sand recycling system in your factory? How is your surface treated to ensure a good appearance?

The fine sand recycling system ensures that we always use the highest quality fine sand and combined with two-shot blasting treatments to minimize appearance defects and give our customers a better sensory experience.

 

Is it difficult to produce small items (products below 100kg) and is the delivery period long?

Our main products are 200kg-6000kg. The cost of casting small parts is high, and small parts are generally used to help customers put together a whole container. Since there is no special equipment for small parts, they needs to be put together according to the production plan of other products, so the production cycle will be a bit longer.

 

Please inform the nearest airport or train station from your factory.

Airport: HangZhou AIRPORT(45 minutes by car); Train station: HangZhou RAILWAY STATION (25 minutes by car)

Screw Shaft Types

If you’re looking for a screw shaft, but aren’t sure which type to buy, you’re in luck. In this article, we’ll talk about the different types, including Threaded shank, Round head, and Machined. Once you’ve read it, you’ll know which type to buy. Then, you can decide whether you want a ball screw nut or a threaded shank.

Machined screw shafts

Besides the standard stainless steel shaft, manufacturers also provide a variety of other materials, such as titanium, bronze, and brass. In addition to stainless steel, manufacturers also provide a variety of top-coating options, including zinc, brass, and chromium. Aluminum screws are not particularly durable and are easily affected by weather. Most screw shafts feature self-locking mechanisms. They are especially useful in C-clamps, vises, and screw-top container lids.
For applications where accuracy is vital, a ball screw shaft needs to be annealed. A heat treatment can be performed on the ball screw shaft to ensure that both ends are heated evenly. In this process, the shaft will be more durable, while maintaining its high-precision properties. These screw shafts are a key component in computer-controlled motion-control systems, wire bonding, and other industries that require high-precision and high-quality performance.
Depending on the material used, screw shafts can be made of stainless steel or titanium. High-precision CNC machines and lathes are typically used to manufacture screw shafts. Various shapes and sizes are available, each with a specific application. Whether you need a small or large screw, you can find 1 to fit your needs. And since each size requires a different material, your choice of material is important as well.
In general, the materials used for machining screw shafts are steel, stainless steel, titanium, brass, bronze, and aluminum. Metals that resist corrosion are also commonly used. Other materials for screw shafts are Teflon, nylon, and nylon. You can also find threaded screw shafts in materials such as porcelain, glass, and ceramic. If you want to use your screws in a unique material, consider purchasing a customized one.
screwshaft

Ball screw nuts

If you have a screw shaft, the last thing you want to worry about is the ball nut slipping off. To prevent this, you can place a temporary stop in the shaft’s grooves to ensure that the ball nut does not slide off. When you remove the stop, you can then install the ball screw nut. But, before you can install the ball screw nut, you have to make sure that you have a good grip on the shaft.
When selecting ball screw nuts, it’s important to consider how much preload you need to apply to avoid excessive backlash. Preloading eliminates this problem by making the ball nut compact. It also prevents backlash, which is lost motion caused by clearance between the ball and nut. Backlash disrupts repeatability and accuracy. This is where spacer preloading comes in. You can insert a spacer between the 2 ball nuts to transmit the force to the nut. However, you should keep in mind that this method reduces the load capacity of the ball screw.
The critical speed of a screw is the maximum rotating speed before it whips. This critical speed is influenced by several factors, including the diameter of the screw shaft, the number of support elements, and the material. By adjusting these factors, you can reduce the number of components used and the amount of time it takes to assemble the screw shaft. In addition, you can also reduce the number of components and avoid stacking tolerances. However, the critical speed of plastic nuts is limited due to sliding friction.
The ball screw nut has several characteristics that make it unique. Its most prominent feature is the presence of ball bearings. These balls help reduce friction between the screw nut and the shaft. Without ball bearings, the friction would be too high to function properly. Another important characteristic is the groove profile of the nut and ball. These 2 features ensure that the ball and the nut meet at 2 points. You’ll be amazed by the results of the work of these ball screw nuts.
screwshaft

Threaded shank

Wood screws are usually not fully threaded because the shank has an unthreaded portion at the top. This shoulder part forces the screw to compress 2 pieces of wood, which prevents the screw from overheating and compromising the materials strength. As the screw is threaded partially up, it is not as difficult to remove as a fully threaded screw. However, it is important to note that a wood screw will not hold as tightly as 1 with a fully threaded shank.
In addition to being universal, screw threads can be of different sizes. For example, a M8 screw has a thread pitch of 1.25 mm. To avoid confusion, screw thread pitches are commonly given with a multiplication sign. For example, M8x1 means that the screw is 8 mm in diameter but has a thread pitch of 1 mm per 360-degree rotation. Those who are not familiar with these dimensions may find it confusing.
The OD of the threaded portion of a bolt is generally smaller than the OD of the nut. If the shank is too deep for the nut to fit, the threads may bottom out. This is why it’s important to use a thread-cutting bit with a small thread diameter. You can use a micrometer or caliper to measure the thread diameter. This tool will also allow you to easily identify which screw size fits where and how well.
The metric system is the most widely used. Fasteners with DIN numbers are generally metric in size. This makes them very useful for industrial settings. You can find metric-sized screws anywhere, as long as you buy them from a reputable manufacturer. These fasteners also come with a dog point, which is used for safety wire. If the screw needs to be replaced, the shank can be drilled with a hole for a safety wire or for a dog-point.

Round head

A round head screw is the most common type used for machine screws. Other common types include truss head, flat head, and hexed head. Each has a different profile and are used for different purposes. A round head screw is typically wider than a flat or a hexed head, and has a slightly rounded surface. These screws are useful for projects involving sheet metal or sheet-metal parts. Round heads are usually slightly wider than a hex head screw, and they may also be used as a substitute for washers in certain applications. However, truss heads are not necessary for every project.
A wood screw has a smooth shank that protrudes above the surface of the material it is attaching. A metal screw has a threaded shaft that is fully threaded from head to point, and a fully threaded shaft provides more bite. Two common head styles are round head and pan head. If the task requires the screw to be flush or countersunk, the round head will be the best choice.
Another type is the Reed & Prince screw drive. These are similar to Phillips screws but have a 75-degree V shape. They are commonly used in marine hardware and are also known as BNAE NFL22-070. This type is also used for steel plate hangers. In addition to round head and pan head screws, there are a variety of other screw types. You can even get a head with a slotted head if you know where to look.
Screw diameters are specified according to the ISO 261 or ISO 262 standards. An M8 screw has a diameter of 8.25 mm. The M8 screw has a pitch of 1.25 mm, which is equivalent to 1 mm per 360 degrees. There are several other standard screw sizes and thread diameters available. You can find them all by consulting the relevant standards. But remember, the metric system is the most popular.
screwshaft

Self-locking mechanism

A self-locking mechanism for a screw shaft is a device that secures the screw to its supporting member in a failure position. The locking mechanism provides a positive connection between the screw shaft and the control surface during normal operation, and locks the screw to its supporting member when the screw fails. Previous attempts to solve this problem have typically used secondary nuts with free play on the screw, which were intentionally designed to jam when loaded. However, such a device can be unreliable, which is why the present invention offers a more robust and reliable locking mechanism.
The self-locking function of a screw depends on several factors, including its pitch angle and the coefficient of friction of the threads. The angle of friction must be less than the tangent of the material pairing to prevent untightening of the screw. Screws with self-locking mechanisms have an efficiency e lower than 50%, which is less than half. Self-locking screws also have the benefit of being less efficient than a standard screw.
Unlike a normal screw, a self-locking screw can be turned in either direction. The nut 22 rotates with the screw shaft, and the member 23 is translated in an axial direction. Regardless of the direction of the rotation of the screw, this axial translation will result in the opposite moment to that input moment. While screw self-locking mechanisms are typically less expensive, they are more reliable and durable.
Another important feature of self-locking screws is that they are not susceptible to independent loosening. The screw cannot rotate without a certain amount of torque. In addition, a self-locking screw shaft must have a small wedge with a smaller half-angle than the arctangent of the static friction. This means that the torque applied by the driver must be greater than the torque needed to overcome the friction.

China Best Sales Good Quality Crusher Steel Eccentric Main Shaft for CZPT Crusher Machine   with Great qualityChina Best Sales Good Quality Crusher Steel Eccentric Main Shaft for CZPT Crusher Machine   with Great quality

China factory 0.12-0.8mm Thickness Transverse Corrugated Color Steel Roof Tile Roll Forming Machine with Hot selling

Product Description

0.12-0.8mm Thickness Transverse Corrugated Color Steel Roof Tile roll forming machine

 

Technical parameter

(We can reasonably change the machine parameters according to your requirements)

(1) Suitable material: Full hard galvanized sheets

(2) Weight:7 tons

(3) Outline Dimensions :5400X2000X1500MM

(4) Thickness of the plate: 0.16-0.25 mm

(5) Input width of the plate:Based on detailed design

(6) Width of the plate after forming:Based on detailed sizes

(7) Productivity Speed:10-12times/min

(8) DEPTH OF WAVE: Can customize based on you need

(9) PITCH OF WAVE:Can customize based on you need

(10) DRIVE Motor:7.5KW

(11) OUTPUT:2-4 TONS PER HOUR

(12) CORRUGATION PARAMETERS:The tolerance of the width, depth, No,of waves of the roofing sheet after corrugated in accordance with JIS G3316 (1987) standard.

 

Working flow 

 

More type 

Our service

1.We can produce the specialmachine,send your drawing to us,we can desgin for you.

2. If you buy our products,we also can help you to purchase the material,like color roll,the price is lower than you buy by yourself.

3We provude a 1 year warranty and lifelong technical support,wa can send our technical to you to give you on-site training.The training period would be for no more than 1 week with the customer paying for the visa,return ticket,food ,accommodations and a daily wage of US100

4. Engineer available to service machinery overseas.

5. If you come to visit our factory ,we can book the room for you,car pick up to send.

 

Packaging & Shipping

 

1.Packaging Details:Nude,with waterproof cloth and stow-wood. Imported computer control system packed with waterproof cloth and card board.

2.Port:ZheJiang XIHU (WEST LAKE) DIS.G PortLead .

3.Time: Shipped in 35 days after payment.

Usually the welding pipe cold roll forming machine can be packed into 1 20′ feet container or 40′ feet container. We have good relationship with the shipping agent. Either you can find the shipping line at your side or we can help you.

FAQ

Q1. What are the main key points for selecting right machines?

A1: Whole structure,Roller Shaft,Roller Material,Motor&Pump,and Control system. As the new buyer, please kindly know that price not the final point.

Good quality is for long-term business cooperation.

 

Q2. Can you provide OEM service for roll forming machine?

A2: Yes, most of cold roll forming machine need to be customized as detailed request, because raw material , size , production usage, machine speed, then machine specification will be some different.

 

Q3. What’s your standard trade terms ?

A2: We can provide the technical offer with FOB,CFR,CIF,Door to Door and so on. Please kindly tell the detailed port name for competitive CZPT freight.

 

Q4. How about the quality control?

A4: Our company adopts 6S system to control every part with passed ISO9001:2000, CE,TUV/BV(Alibaba) Certificate.

 

Q5. How about the after-sale service?

A5: We provide 12 months free warranty and free technical support for the whole life of any machine. During warranty period, if parts still broken, we can send the new ones freely.

 

Q6. If I am in ZheJiang ,or ZheJiang ,how to visit your company?

A6: 1)Fly to ZheJiang  airport: By high speed train From ZheJiang  Nan to HangZhou Xi (1 hour),then we can pick up you.

2)Fly to ZheJiang  Airport: By high speed train From ZheJiang  Xihu (West Lake) Dis.ao  to HangZhou Xi(4.5 hours),then we can pick up you.

 

 

What Are Screw Shaft Threads?

A screw shaft is a threaded part used to fasten other components. The threads on a screw shaft are often described by their Coefficient of Friction, which describes how much friction is present between the mating surfaces. This article discusses these characteristics as well as the Material and Helix angle. You’ll have a better understanding of your screw shaft’s threads after reading this article. Here are some examples. Once you understand these details, you’ll be able to select the best screw nut for your needs.
screwshaft

Coefficient of friction between the mating surfaces of a nut and a screw shaft

There are 2 types of friction coefficients. Dynamic friction and static friction. The latter refers to the amount of friction a nut has to resist an opposing motion. In addition to the material strength, a higher coefficient of friction can cause stick-slip. This can lead to intermittent running behavior and loud squeaking. Stick-slip may lead to a malfunctioning plain bearing. Rough shafts can be used to improve this condition.
The 2 types of friction coefficients are related to the applied force. When applying force, the applied force must equal the nut’s pitch diameter. When the screw shaft is tightened, the force may be removed. In the case of a loosening clamp, the applied force is smaller than the bolt’s pitch diameter. Therefore, the higher the property class of the bolt, the lower the coefficient of friction.
In most cases, the screwface coefficient of friction is lower than the nut face. This is because of zinc plating on the joint surface. Moreover, power screws are commonly used in the aerospace industry. Whether or not they are power screws, they are typically made of carbon steel, alloy steel, or stainless steel. They are often used in conjunction with bronze or plastic nuts, which are preferred in higher-duty applications. These screws often require no holding brakes and are extremely easy to use in many applications.
The coefficient of friction between the mating surfaces of t-screws is highly dependent on the material of the screw and the nut. For example, screws with internal lubricated plastic nuts use bearing-grade bronze nuts. These nuts are usually used on carbon steel screws, but can be used with stainless steel screws. In addition to this, they are easy to clean.

Helix angle

In most applications, the helix angle of a screw shaft is an important factor for torque calculation. There are 2 types of helix angle: right and left hand. The right hand screw is usually smaller than the left hand one. The left hand screw is larger than the right hand screw. However, there are some exceptions to the rule. A left hand screw may have a greater helix angle than a right hand screw.
A screw’s helix angle is the angle formed by the helix and the axial line. Although the helix angle is not usually changed, it can have a significant effect on the processing of the screw and the amount of material conveyed. These changes are more common in 2 stage and special mixing screws, and metering screws. These measurements are crucial for determining the helix angle. In most cases, the lead angle is the correct angle when the screw shaft has the right helix angle.
High helix screws have large leads, sometimes up to 6 times the screw diameter. These screws reduce the screw diameter, mass, and inertia, allowing for higher speed and precision. High helix screws are also low-rotation, so they minimize vibrations and audible noises. But the right helix angle is important in any application. You must carefully choose the right type of screw for the job at hand.
If you choose a screw gear that has a helix angle other than parallel, you should select a thrust bearing with a correspondingly large center distance. In the case of a screw gear, a 45-degree helix angle is most common. A helix angle greater than zero degrees is also acceptable. Mixing up helix angles is beneficial because it allows for a variety of center distances and unique applications.
screwshaft

Thread angle

The thread angle of a screw shaft is measured from the base of the head of the screw to the top of the screw’s thread. In America, the standard screw thread angle is 60 degrees. The standard thread angle was not widely adopted until the early twentieth century. A committee was established by the Franklin Institute in 1864 to study screw threads. The committee recommended the Sellers thread, which was modified into the United States Standard Thread. The standardized thread was adopted by the United States Navy in 1868 and was recommended for construction by the Master Car Builders’ Association in 1871.
Generally speaking, the major diameter of a screw’s threads is the outside diameter. The major diameter of a nut is not directly measured, but can be determined with go/no-go gauges. It is necessary to understand the major and minor diameters in relation to each other in order to determine a screw’s thread angle. Once this is known, the next step is to determine how much of a pitch is necessary to ensure a screw’s proper function.
Helix angle and thread angle are 2 different types of angles that affect screw efficiency. For a lead screw, the helix angle is the angle between the helix of the thread and the line perpendicular to the axis of rotation. A lead screw has a greater helix angle than a helical one, but has higher frictional losses. A high-quality lead screw requires a higher torque to rotate. Thread angle and lead angle are complementary angles, but each screw has its own specific advantages.
Screw pitch and TPI have little to do with tolerances, craftsmanship, quality, or cost, but rather the size of a screw’s thread relative to its diameter. Compared to a standard screw, the fine and coarse threads are easier to tighten. The coarser thread is deeper, which results in lower torques. If a screw fails because of torsional shear, it is likely to be a result of a small minor diameter.

Material

Screws have a variety of different sizes, shapes, and materials. They are typically machined on CNC machines and lathes. Each type is used for different purposes. The size and material of a screw shaft are influenced by how it will be used. The following sections give an overview of the main types of screw shafts. Each 1 is designed to perform a specific function. If you have questions about a specific type, contact your local machine shop.
Lead screws are cheaper than ball screws and are used in light-duty, intermittent applications. Lead screws, however, have poor efficiency and are not recommended for continuous power transmission. But, they are effective in vertical applications and are more compact. Lead screws are typically used as a kinematic pair with a ball screw. Some types of lead screws also have self-locking properties. Because they have a low coefficient of friction, they have a compact design and very few parts.
Screws are made of a variety of metals and alloys. Steel is an economical and durable material, but there are also alloy steel and stainless steel types. Bronze nuts are the most common and are often used in higher-duty applications. Plastic nuts provide low-friction, which helps reduce the drive torques. Stainless steel screws are also used in high-performance applications, and may be made of titanium. The materials used to create screw shafts vary, but they all have their specific functions.
Screws are used in a wide range of applications, from industrial and consumer products to transportation equipment. They are used in many different industries, and the materials they’re made of can determine their life. The life of a screw depends on the load that it bears, the design of its internal structure, lubrication, and machining processes. When choosing screw assemblies, look for a screw made from the highest quality steels possible. Usually, the materials are very clean, so they’re a great choice for a screw. However, the presence of imperfections may cause a normal fatigue failure.
screwshaft

Self-locking features

Screws are known to be self-locking by nature. The mechanism for this feature is based on several factors, such as the pitch angle of the threads, material pairing, lubrication, and heating. This feature is only possible if the shaft is subjected to conditions that are not likely to cause the threads to loosen on their own. The self-locking ability of a screw depends on several factors, including the pitch angle of the thread flank and the coefficient of sliding friction between the 2 materials.
One of the most common uses of screws is in a screw top container lid, corkscrew, threaded pipe joint, vise, C-clamp, and screw jack. Other applications of screw shafts include transferring power, but these are often intermittent and low-power operations. Screws are also used to move material in Archimedes’ screw, auger earth drill, screw conveyor, and micrometer.
A common self-locking feature for a screw is the presence of a lead screw. A screw with a low PV value is safe to operate, but a screw with high PV will need a lower rotation speed. Another example is a self-locking screw that does not require lubrication. The PV value is also dependent on the material of the screw’s construction, as well as its lubrication conditions. Finally, a screw’s end fixity – the way the screw is supported – affects the performance and efficiency of a screw.
Lead screws are less expensive and easier to manufacture. They are a good choice for light-weight and intermittent applications. These screws also have self-locking capabilities. They can be self-tightened and require less torque for driving than other types. The advantage of lead screws is their small size and minimal number of parts. They are highly efficient in vertical and intermittent applications. They are not as accurate as lead screws and often have backlash, which is caused by insufficient threads.

China factory 0.12-0.8mm Thickness Transverse Corrugated Color Steel Roof Tile Roll Forming Machine   with Hot sellingChina factory 0.12-0.8mm Thickness Transverse Corrugated Color Steel Roof Tile Roll Forming Machine   with Hot selling

China Hot selling Carbon Steel /Aluminum/ Metal CNC Plasma Tube Cutting Machine Steel Pipe Cutting Machine near me shop

Product Description

CE quality cnc plasma flame metal steel automatic pipe cutting machine Metal Tube hypertherm plasma Cutting Machine
Introduction
Suitable for cutting the cylinder branch, two, 3 or more layer saddle cutting of the main pipe.
ZLQ seriers CNC Steel pipe cutter is special CNC equipment which is used for cutting metal pipe automatically. It can reslize auto program and auto CNC nesting work for any complicated joint type of intertube and pipe and non-inter tube. And can cut any type welding bevel at 1 time. This product is widely used for steel structure, ship building, bridge and heavy machine industries.

Cutting technical specifications:
1. Cutting steel type: Round & square
2. Figures can be cut: Variety of graphics by outspreading intersecting line, can be with bevel
3. Control Axes: 3-4-5-6 axies, bevel cutting with 6 spindle and six-interlocking.
4. Diameter: 30-1000mm or customize (bigger dia. )
5. Thickness of the pipe: Flame: 5-200mm, plasma: 1-60mm
6. Bevel cutting range: Flame 60degree, plasma 30, 45degree.
7. Cutting way: Plasma or /and gas
8. Pipe max length: ≥ 6m
9. Pipe clamping method: Chuck
10. Power-driven: High-precision AC servo+dedicated planetary reducer
11. Control System: A dedicated intersecting line cutting system: 6-axis controlled, with quantitative intersecting line cutting macro library
Performance and precision mechanical movement indicators
ZLQ-65 intersection Cutting Machine CNC positioning accuracy, repeatability reach JB / T 5102-99 standard, cutting up JB/T10045.3-1999 quality standards, cutting roughness Ra ≤ 12.5μ M.
Requirements of the moving parts in the work process run smoothly and without noticeable vibration ( beat ) phenomenon.
1, the workpiece rotary drive

Drive System Precision gear box,: Gear transmission
Speed: 0.1-25 rpm / min
Japanese CZPT servo: A5 Series AC servo system
Reset Accuracy: ± 0.5mm
Adjustment range: 6-1000

2, CZPT the car moved axially along the workpiece
Precision Drive System: ZheJiang Planetary gear box, gear, rack gear
Effective stroke: 12000mm CZPT car
Japanese CZPT servo: A5 Series AC servo system
Reset Accuracy: ± 0.5mm

3, CZPT fan axial plane workpiece swing axle

Precision Drive System: ZheJiang Planetary gear box, gear, rack gear
Swing angle: 30 ° -150 °
Japanese CZPT servo: A5 Series AC servo system
Positioning accuracy of ± 0.3 °
4, CZPT the car moves up and down shaft

Drive system: Linear guide, ball screw drive to pay
Torch the car up and down stroke determine: The form of the cutter ( cutting diameter compliance requirements )
Japanese CZPT servo: A5 Series AC servo system
Reset Accuracy: ± 0.2mm
5, the workpiece CZPT fan oscillating axle radial plane
Drive system: Curved rack ( arms drive )
Swing angle: 30 ° -150 °
Japanese CZPT servo: A5 Series AC servo system
Positioning accuracy: ± 0.3 °

6, the auxiliary measurement axis: Profiling measurements and the pipe surface to prevent collisions with the torch

7, the CZPT moves back and forth along the tube axis radial
Drive system: Linear guide, rack size
Move forward and backward stroke: 500mm
Japanese CZPT servo: A5 Series AC servo system
Mobile accuracy: ± 0.2mm

Cutting video:

 NO.  ITEM  PARAMETERS
 1.  pipe diameter  Φ=30~1000mm
 2.  Cutting mode  Flame & plasma 
 3.  Flame cutting thickness  δ 5mm-180mm
 4.  Plasma cutting pipe thickness  1-32mm
 5.  Guid rail  15,000mm
 6.  Effective cutting pipe length  12,000mm
 7.  pipe ovality  ≤1%
 8.  Cutting speed  V≤5000mm/min
 9.  translational speed V0=10~6000 mm/min
 10.  Cutting torch axial direction swing angle  α=±45°  Maxα=±60°
 11.  Cutting torch  radial direction  swing angle  β=±45°
 12. Loading capacity  3,000Kg
     
 kinematic axis  Axis choice  6 axis
 X axis:  Pipe rotating axis  YES
 Y axis:  Torch along pipe axial direction horizontal migration   YES
 A axis:  torch long pipe axial direction vertical swing   YES
 Z axis:  Torch  vertical movement   YES
 B axis:  torch along pipe  radial direction  horizontal swing   YES
 w axis:  torch along pipe  radial direction  horizontal migration   YES

 Cut Sample:

 Package Picture:

 
Our Factory:

Customer Visit:

CE&ISO Certificate:

FAQ:
1. Are you factory or foreign trade company?
We are over 17 years experienced manufacturers, large-scale production of CNC cutting machine.

2. Where is your factory located? How can I visit there? 
Our factory is located in HangZhou, ZheJiang . We will meet you at airport or train station. Warmly welcome to visit us! 

3. What’s the quality of your products? 
We are very focused on the quality of the products, All spare parts of this machine come with best brand and best quality, after completing the installation we will test the machine for 48 hours. Our factory has gained CE, ISO9001 authentication.

4. What shall we do if don’t know how to operate your machine after bought from you? 
We have detailed installation and operating instructions attached, also comes with video, it is very simple. We have telephone and email support at 24 hours a day.

5. What other things also need after we bought your machines? 
(1) With flame cutting: oxygen and fuel gas.
(2) With plasma cutting: air compressor. Plasma power is purchased by us, so that we can debug online, and we all need very good plasma power to ensure quality.

6. What are your payment terms? 
We support T/T, L/C, Western Union, Alibaba Trade Assurance and so on. Other ways can also be received after we both sides discussion and agreement.

Contact Me:
AlisonChen 

What is a drive shaft?

If you notice a clicking noise while driving, it is most likely the driveshaft. An experienced auto mechanic will be able to tell you if the noise is coming from both sides or from 1 side. If it only happens on 1 side, you should check it. If you notice noise on both sides, you should contact a mechanic. In either case, a replacement driveshaft should be easy to find.
air-compressor

The drive shaft is a mechanical part

A driveshaft is a mechanical device that transmits rotation and torque from the engine to the wheels of the vehicle. This component is essential to the operation of any driveline, as the mechanical power from the engine is transmitted to the PTO (power take-off) shaft, which hydraulically transmits that power to connected equipment. Different drive shafts contain different combinations of joints to compensate for changes in shaft length and angle. Some types of drive shafts include connecting shafts, internal constant velocity joints, and external fixed joints. They also contain anti-lock system rings and torsional dampers to prevent overloading the axle or causing the wheels to lock.
Although driveshafts are relatively light, they need to handle a lot of torque. Torque applied to the drive shaft produces torsional and shear stresses. Because they have to withstand torque, these shafts are designed to be lightweight and have little inertia or weight. Therefore, they usually have a joint, coupling or rod between the 2 parts. Components can also be bent to accommodate changes in the distance between them.
The drive shaft can be made from a variety of materials. The most common material for these components is steel, although alloy steels are often used for high-strength applications. Alloy steel, chromium or vanadium are other materials that can be used. The type of material used depends on the application and size of the component. In many cases, metal driveshafts are the most durable and cheapest option. Plastic shafts are used for light duty applications and have different torque levels than metal shafts.

It transfers power from the engine to the wheels

A car’s powertrain consists of an electric motor, transmission, and differential. Each section performs a specific job. In a rear-wheel drive vehicle, the power generated by the engine is transmitted to the rear tires. This arrangement improves braking and handling. The differential controls how much power each wheel receives. The torque of the engine is transferred to the wheels according to its speed.
The transmission transfers power from the engine to the wheels. It is also called “transgender”. Its job is to ensure power is delivered to the wheels. Electric cars cannot drive themselves and require a gearbox to drive forward. It also controls how much power reaches the wheels at any given moment. The transmission is the last part of the power transmission chain. Despite its many names, the transmission is the most complex component of a car’s powertrain.
The driveshaft is a long steel tube that transmits mechanical power from the transmission to the wheels. Cardan joints connect to the drive shaft and provide flexible pivot points. The differential assembly is mounted on the drive shaft, allowing the wheels to turn at different speeds. The differential allows the wheels to turn at different speeds and is very important when cornering. Axles are also important to the performance of the car.

It has a rubber boot that protects it from dust and moisture

To keep this boot in good condition, you should clean it with cold water and a rag. Never place it in the dryer or in direct sunlight. Heat can deteriorate the rubber and cause it to shrink or crack. To prolong the life of your rubber boots, apply rubber conditioner to them regularly. Indigenous peoples in the Amazon region collect latex sap from the bark of rubber trees. Then they put their feet on the fire to solidify the sap.
air-compressor

it has a U-shaped connector

The drive shaft has a U-joint that transfers rotational energy from the engine to the axle. Defective gimbal joints can cause vibrations when the vehicle is in motion. This vibration is often mistaken for a wheel balance problem. Wheel balance problems can cause the vehicle to vibrate while driving, while a U-joint failure can cause the vehicle to vibrate when decelerating and accelerating, and stop when the vehicle is stopped.
The drive shaft is connected to the transmission and differential using a U-joint. It allows for small changes in position between the 2 components. This prevents the differential and transmission from remaining perfectly aligned. The U-joint also allows the drive shaft to be connected unconstrained, allowing the vehicle to move. Its main purpose is to transmit electricity. Of all types of elastic couplings, U-joints are the oldest.
Your vehicle’s U-joints should be inspected at least twice a year, and the joints should be greased. When checking the U-joint, you should hear a dull sound when changing gears. A clicking sound indicates insufficient grease in the bearing. If you hear or feel vibrations when shifting gears, you may need to service the bearings to prolong their life.

it has a slide-in tube

The telescopic design is a modern alternative to traditional driveshaft designs. This innovative design is based on an unconventional design philosophy that combines advances in material science and manufacturing processes. Therefore, they are more efficient and lighter than conventional designs. Slide-in tubes are a simple and efficient design solution for any vehicle application. Here are some of its benefits. Read on to learn why this type of shaft is ideal for many applications.
The telescopic drive shaft is an important part of the traditional automobile transmission system. These driveshafts allow linear motion of the 2 components, transmitting torque and rotation throughout the vehicle’s driveline. They also absorb energy if the vehicle collides. Often referred to as foldable driveshafts, their popularity is directly dependent on the evolution of the automotive industry.
air-compressor

It uses a bearing press to replace worn or damaged U-joints

A bearing press is a device that uses a rotary press mechanism to install or remove worn or damaged U-joints from a drive shaft. With this tool, you can replace worn or damaged U-joints in your car with relative ease. The first step involves placing the drive shaft in the vise. Then, use the 11/16″ socket to press the other cup in far enough to install the clips. If the cups don’t fit, you can use a bearing press to remove them and repeat the process. After removing the U-joint, use a grease nipple Make sure the new grease nipple is installed correctly.
Worn or damaged U-joints are a major source of driveshaft failure. If 1 of them were damaged or damaged, the entire driveshaft could dislocate and the car would lose power. Unless you have a professional mechanic doing the repairs, you will have to replace the entire driveshaft. Fortunately, there are many ways to do this yourself.
If any of these warning signs appear on your vehicle, you should consider replacing the damaged or worn U-joint. Common symptoms of damaged U-joints include rattling or periodic squeaking when moving, rattling when shifting, wobbling when turning, or rusted oil seals. If you notice any of these symptoms, take your vehicle to a qualified mechanic for a full inspection. Neglecting to replace a worn or damaged u-joint on the driveshaft can result in expensive and dangerous repairs and can cause significant damage to your vehicle.

China Hot selling Carbon Steel /Aluminum/ Metal CNC Plasma Tube Cutting Machine Steel Pipe Cutting Machine   near me shop China Hot selling Carbon Steel /Aluminum/ Metal CNC Plasma Tube Cutting Machine Steel Pipe Cutting Machine   near me shop

China manufacturer China 1-3mm Hot Rolled Coil Cut to Length Line Steel Coil Cutting Machine Cut to Length Line near me manufacturer

Product Description

             china 1-3mm hot rolled coil cut to length line steel coil cutting machine cut to length line

 

Customer requirements:

1.Galvanized steel thickness:0.25-3mm

2.Material width:1250mm

  3.Machine’s color:Green

 

Material:GI, PPGI and others. But if you want to cutting stainless steel, please tell us and then we will change the cutting blade material for
your reference.

 

WORK FLOW

DECOILER—FEEDING—LEVELING—SHEARING— CONVEYOR BELT— AUTOMATIC STACKER TABLE

 

Item Name Unit Quantity
1 5 tons hydraulic decoiler with loading car set 1
2 Leveling and cutting machine set 1
3 Conveyor set 1
4 Control system set 1
5 Hydraulic station set 1
6 4m auto stacker set 1

 

 

1. 5 tons hydraulic decoiler with car and upender

Coil loading car: (Regarding the loading car, the min height that can be lowered is 540mm, and the max

height is 925mm. If you have special requirements, please let us know in advance.)

1) The car can move levelly and vertically, which is convenient for putting the steel coils into the de-coiler.

2) It is driven vertically by hydraulic cylinder with 4 CZPT pillars

3) The level movement is driven by motor

4) Driving motor power: 0.75 kw, max capacity is 5 Ton. Function: It is used to lift up and down, move forward and back to make it easy to
load the coils on decoiler. Hydraulic controls lifting, motor drives moving. The car

is controlled on the auxiliary control panel. Its moving speed is 6-7 m/min. When coils on decoiler, car will

return back to the start position. It can also carry back the unfinished coils from decoiler.

 

Auto decoiler:

1) Supporting the coils and doing uncoiling. The capacity is 5 Tons(max). Equipped with the brake system

2) It adopts the hydraulic oil cylinder to make the decoiler expandable and fit to the inner diameter of coils. It is equipped with the cantilever.

3) Motor drive the coils running and can do forward and reverse running as well as do the decoiling with tension. Max coil width: 1250 mm

Feeding speed: 0-40 m/min (adjustable)

Driving motor power: 5.5 kw

Hydraulic motor power: 5.5 kw

4) Structure: welding by the steel plates and profiled bar. Inner diameter 550-650mm (Remarks: The adjustment range of the max inner diameter
and the min inner diameter is within 100mm, and the adjustable range can be increased through the gasket.)

Part 2: Leveling and cutting 
 Feeding width Adjustable,max 1250mm
 Shaft material 45 # steel with tempered
 Shaft diameter 70mm
 Leveling roller 13 rollers,up 5 down 6 with 1 pair of feeding roller
 Leveling type 4-HI level,the precision is higher than normal one
 Motor power 7.5kw
 Speed About 0-20m/min,speed is adjustable
 Roller space adjustment Automatically adjusted by motor
 Cutting type Hydraulic cutting
 Cutting blade material Cr 12 with quenched treatment
 Cutting length Adjustable,controlled by PLC

 

Part3: Control systerm
 Control system  PLC
 PLC Brand  Siemens
 Screen  Siemens touch screen
 Encoder  Omron
 Converter  Delta from ZheJiang
 Function  Control the speed,cutting length and quantity
 Remote control With the remote control for easier operation.

Part 4: Automatic Conveyor belt

Part 5, Automatic Stacker

 

Max Length of the sheet :4000mm

Max Width of the sheet : 1250mm

Table is moveable with the wheels and have lock

Table capacity: 1000 kgs

Company Profile


FAQ:

1.How to get a quotation of coil slitting line?

If you want to order this machine, kindly contact me by Email or Phone, please tell us your requiremnts,

1.material of the coil:

2.thickness of the coil:

3.width of the coil:

4.Maximum coil weight:

5.maxium slitting strips quantity:

6.the minimum width of the slitting strip:

7.the maxmum width of the slitting strip:

8.Speed :

Then we can offer you the most proper solution for your machine and will send you quotations with specifications and price.

2. Terms of payment:
30% T/T, Balance to be paid before shipping after inspection. We also accept the payment L/C, O/A , D/P.

3. What is your after-sale service?
coil slitting line warranty period is 24 months,if the broken parts can’t be repaired,we can send new to replace for free,but you need to pay the express cost.we supply the technical support for the whole life of the equipment.

4. How to visit your company?

Kindly tell us your visting time, we can pick up you AT the stations. and help you check the airport ticket and train ticket.

Our city is near ZheJiang , it is about 54 minutes by high speed train, it is short time and convenient for you to by train to our city from ZheJiang , so we suggest you come by high speed train.

 

Screw Shaft Types and Uses

Various uses for the screw shaft are numerous. Its major diameter is the most significant characteristic, while other aspects include material and function are important. Let us explore these topics in more detail. There are many different types of screw shafts, which include bronze, brass, titanium, and stainless steel. Read on to learn about the most common types. Listed below are some of the most common uses for a screw shaft. These include: C-clamps, screw jacks, vises, and more.
screwshaft

Major diameter of a screw shaft

A screw’s major diameter is measured in fractions of an inch. This measurement is commonly found on the screw label. A screw with a major diameter less than 1/4″ is labeled #0 to #14; those with a larger diameter are labeled fractions of an inch in a corresponding decimal scale. The length of a screw, also known as the shaft, is another measure used for the screw.
The major diameter of a screw shaft is the greater of its 2 outer diameters. When determining the major diameter of a screw, use a caliper, micrometer, or steel rule to make an accurate measurement. Generally, the first number in the thread designation refers to the major diameter. Therefore, if a screw has a thread of 1/2-10 Acme, the major diameter of the thread is.500 inches. The major diameter of the screw shaft will be smaller or larger than the original diameter, so it’s a good idea to measure the section of the screw that’s least used.
Another important measurement is the pitch. This measures the distance between 1 thread’s tip and the next thread’s corresponding point. Pitch is an important measurement because it refers to the distance a screw will advance in 1 turn. While lead and pitch are 2 separate concepts, they are often used interchangeably. As such, it’s important to know how to use them properly. This will make it easier to understand how to select the correct screw.
There are 3 different types of threads. The UTS and ISO metric threads are similar, but their common values for Dmaj and Pmaj are different. A screw’s major diameter is the largest diameter, while the minor diameter is the lowest. A nut’s major diameter, or the minor diameter, is also called the nut’s inside diameter. A bolt’s major diameter and minor diameter are measured with go/no-go gauges or by using an optical comparator.
The British Association and American Society of Mechanical Engineers standardized screw threads in the 1840s. A standard named “British Standard Whitworth” became a common standard for screw threads in the United States through the 1860s. In 1864, William Sellers proposed a new standard that simplified the Whitworth thread and had a 55 degree angle at the tip. Both standards were widely accepted. The major diameter of a screw shaft can vary from 1 manufacturer to another, so it’s important to know what size screw you’re looking for.
In addition to the thread angle, a screw’s major diameter determines the features it has and how it should be used. A screw’s point, or “thread”, is usually spiky and used to drill into an object. A flat tipped screw, on the other hand, is flat and requires a pre-drilled hole for installation. Finally, the diameter of a screw bolt is determined by the major and minor diameters.
screwshaft

Material of a screw shaft

A screw shaft is a piece of machine equipment used to move raw materials. The screw shaft typically comprises a raw material w. For a particular screw to function correctly, the raw material must be sized properly. In general, screw shafts should have an axial-direction length L equal to the moving amount k per 1/2 rotation of the screw. The screw shaft must also have a proper contact angle ph1 in order to prevent raw material from penetrating the screw shaft.
The material used for the shaft depends on its application. A screw with a ball bearing will work better with a steel shaft than 1 made of aluminum. Aluminum screw shafts are the most commonly used for this application. Other materials include titanium. Some manufacturers also prefer stainless steel. However, if you want a screw with a more modern appearance, a titanium shaft is the way to go. In addition to that, screws with a chromium finish have better wear resistance.
The material of a screw shaft is important for a variety of applications. It needs to have high precision threads and ridges to perform its function. Manufacturers often use high-precision CNC machines and lathes to create screw shafts. Different screw shafts can have varying sizes and shapes, and each 1 will have different applications. Listed below are the different materials used for screw shafts. If you’re looking for a high-quality screw shaft, you should shop around.
A lead screw has an inverse relationship between contact surface pressure and sliding velocity. For heavier axial loads, a reduced rotation speed is needed. This curve will vary depending on the material used for the screw shaft and its lubrication conditions. Another important factor is end fixity. The material of a screw shaft can be either fixed or free, so make sure to consider this factor when choosing the material of your screw. The latter can also influence the critical speed and rigidity of the screw.
A screw shaft’s major diameter is the distance between the outer edge of the thread and the inner smooth part. Screw shafts are typically between 2 and 16 millimeters in diameter. They feature a cylindrical shape, a pointy tip, and a wider head and drive than the former. There are 2 basic types of screw heads: threaded and non-threaded. These have different properties and purposes.
Lead screws are a cost-effective alternative to ball screws, and are used for low power and light to medium-duty applications. They offer some advantages, but are not recommended for continuous power transmission. But lead screws are often quieter and smaller, which make them useful for many applications. Besides, they are often used in a kinematic pair with a nut object. They are also used to position objects.
screwshaft

Function of a screw shaft

When choosing a screw for a linear motion system, there are many factors that should be considered, such as the position of the actuator and the screw and nut selection. Other considerations include the overall length of travel, the fastest move profile, the duty cycle, and the repeatability of the system. As a result, screw technology plays a critical role in the overall performance of a system. Here are the key factors to consider when choosing a screw.
Screws are designed with an external threading that digs out material from a surface or object. Not all screw shafts have complete threading, however. These are known as partially threaded screws. Fully threaded screws feature complete external threading on the shaft and a pointed tip. In addition to their use as fasteners, they can be used to secure and tighten many different types of objects and appliances.
Another factor to consider is axial force. The higher the force, the bigger the screw needs to be. Moreover, screws are similar to columns that are subject to both tension and compression loads. During the compression load, bowing or deflection is not desirable, so the integrity of the screw is important. So, consider the design considerations of your screw shaft and choose accordingly. You can also increase the torque by using different shaft sizes.
Shaft collars are also an important consideration. These are used to secure and position components on the shaft. They also act as stroke limiters and to retain sprocket hubs, bearings, and shaft protectors. They are available in several different styles. In addition to single and double split shaft collars, they can be threaded or set screw. To ensure that a screw collar will fit tightly to the shaft, the cap must not be overtightened.
Screws can be cylindrical or conical and vary in length and diameter. They feature a thread that mates with a complementary helix in the material being screwed into. A self-tapping screw will create a complementary helix during driving, creating a complementary helix that allows the screw to work with the material. A screw head is also an essential part of a screw, providing gripping power and compression to the screw.
A screw’s pitch and lead are also important parameters to consider. The pitch of the screw is the distance between the crests of the threads, which increases mechanical advantage. If the pitch is too small, vibrations will occur. If the pitch is too small, the screw may cause excessive wear and tear on the machine and void its intended purpose. The screw will be useless if it can’t be adjusted. And if it can’t fit a shaft with the required diameter, then it isn’t a good choice.
Despite being the most common type, there are various types of screws that differ in their functions. For example, a machine screw has a round head, while a truss head has a lower-profile dome. An oval-its point screw is a good choice for situations where the screw needs to be adjusted frequently. Another type is a soft nylon tip, which looks like a Half-dog point. It is used to grip textured or curved surfaces.

China manufacturer China 1-3mm Hot Rolled Coil Cut to Length Line Steel Coil Cutting Machine Cut to Length Line   near me manufacturer China manufacturer China 1-3mm Hot Rolled Coil Cut to Length Line Steel Coil Cutting Machine Cut to Length Line   near me manufacturer

China supplier Carbon Steel Fiber Laser Marking Machine near me manufacturer

Product Description

Fiber Laser Marking Machine 

Product Description
Fiber laser marking machine, it can mark metal and some hard plastic. Common mental and rare metal can be marked. such as iron, stainless steel, copper, brass, gold and sliver. Any letter and photo can be marked like number, words, dates, serial number, QR code and bar code.

Advantage
The computer is HP brand.
High speed digital galvanometer.
 Marking program and marking card are genuine.
 The power switch is MEANWELL.
The painted body makes it shining and difficult to fade.

Applicable Area
Jewelry, crafts, jewelry, medicine, cosmetics industries, car and motorcycle parts industry, sanitary ware, stationery, clocks and watches, glasses industry, instrumentation industry, the electronic components industry, electrical appliances, communication products, key, knife industry. Widely used in stainless steel, iron, aluminum, copper, zinc, alloys and other metal materials and some non-metallic materials carving a variety of text, graphics, trademarks.

Applicable Materials
It’s widely used in stainless steel, iron, aluminum, copper, zinc and other metal materials and some non-metallic materials carving a variety of text, graphics, trademarks.

Product performance

Model NO.

HSGQ-20W/30W/50W/100W

Wavelength

1064±10nm

Output power

20W/30W/50W/100W

Marking area

110*110/150*150/175*175/300mm(optional)

Marking depth

≤0.2mm(depending on material and marking area)

Marking speed

≥7000mm/s

Min.line width

0.01mm

Min.character size

0.15mm

Cooling

Air cooling

Location

Red location

Power supply

AC110V±10%Hz or AC220V±10%50Hz

Samples showing

Packaging & Shipping

Our Services
We will train you the technology at our factory for free.
Our engineers could serve you 24 hours online.
We will send you the video show you how to use the machine step by step.
Even our Engineers can speak English, strong support for service and training to customers.
Free maintenance.
24 months guarantee for whole machine.
Machine has been adjusted before delivery.

Company Information
ZheJiang  Holy Laser technology Co.LTD has worked hard to become the global leader in manufacturing of laser equipment. All our products has passed the CE, FCC, SGS, TUV and FDA special for American market. 2012, company has obtained 6 patents certificate for computer software technology. Holy laser has been in the laser business since established. We strive to update our technology in the direction of green, environment-friendly and energy saving. review the past Holy Laser won market recognition step by step.looking for ward the future, Holy Laser will continue to dedicate our company mission and ethnic spirit with you to open a new chapter in history.

Contact us

 

What Is a Worm Gear Reducer?

If you have never seen a worm gear reducer before, you’re missing out! Learn more about these incredible gears and their applications by reading this article! In addition to worm gear reducers, learn about worms and how they’re made. You’ll also discover what types of machines can benefit from worm gears, such as rock crushers and elevators. The following information will help you understand what a worm gear reducer is and how to find 1 in your area.
worm shaft

Typical worm shaft

A typical worm has 2 shafts, 1 for advancing and 1 for receding, which form the axial pitch of the gear. Usually, there are 8 standard axial pitches, which establish a basic dimension for worm production and inspection. The axial pitch of the worm equals the circular pitch of the gear in the central plane and the master lead cam’s radial pitch. A single set of change gears and 1 master lead cam are used to produce each size of worm.
Worm gear is commonly used to manufacture a worm shaft. It is a reliable and efficient gear reduction system that does not move when the power is removed. Typical worm gears come in standard sizes as well as assisted systems. Manufacturers can be found online. Listed below are some common materials for worm gears. There are also many options for lubrication. The worm gear is typically made from case hardened steel or bronze. Non-metallic materials are also used in light-duty applications.
A self-locking worm gear prevents the worm from moving backwards. Typical worm gears are generally self-locking when the lead angle is less than 11 degrees. However, this feature can be detrimental to systems that require reverse sensitivity. If the lead angle is less than 4 degrees, back-driving is unlikely. However, if fail-safe protection is a prerequisite, back-driving worm gears must have a positive brake to avoid reverse movement.
Worm gears are often used in transmission applications. They are a more efficient way to reduce the speed of a machine compared to conventional gear sets. Their reduced speed is possible thanks to their low ratio and few components. Unlike conventional gear sets, worm gears require less maintenance and lower mechanical failure than a conventional gear set. While they require fewer parts, worm gears are also more durable than conventional gear sets.
There are 2 types of worm tooth forms. Convex and involute helicoids have different types of teeth. The former uses a straight line to intersect the involute worm generating line. The latter, on the other hand, uses a trapezoid based on the central cross section of the root. Both of these tooth forms are used in the production of worms. And they have various variations in pitch diameter.
worm shaft

Types of worms

Worms have several forms of tooth. For convenience in production, a trapezoid-based tooth form is used. Other forms include an involute helicoidal or a convolute worm generating a line. The following is a description of each type. All types are similar, and some may be preferred over others. Listed below are the 3 most common worm shaft types. Each type has its own advantages and disadvantages.
Discrete versus parallel axis: The design of a worm gear determines its ratio of torque. It’s a combination of 2 different metals – 1 for the worm and 1 for the wheel – which helps it absorb shock loads. Construction equipment and off-road vehicles typically require varying torques to maneuver over different terrain. A worm gear system can help them maneuver over uneven terrain without causing excessive wear.
Worm gear units have the highest ratio. The sliding action of the worm shaft results in a high self-locking torque. Depending on the angle of inclination and friction, a worm gear can reach up to 100:1! Worm gears can be made of different materials depending on their inclination and friction angle. Worm gears are also useful for gear reduction applications, such as lubrication or grinding. However, you should consider that heavier gears tend to be harder to reverse than lighter ones.
Metal alloy: Stainless steel, brass, and aluminum bronze are common materials for worm gears. All 3 types have unique advantages. A bronze worm gear is typically composed of a combination of copper, zinc, and tin. A bronze shaft is more corrosive than a brass one, but it is a durable and corrosion-resistant option. Metal alloys: These materials are used for both the worm wheel.
The efficiency of worm gears depends on the assembly conditions and the lubricant. A 30:1 ratio reduces the efficiency to 81:1%. A worm gear is more efficient at higher ratios than an helical gear, but a 30:1 ratio reduces the efficiency to 81%. A helical gear reduces speed while preserving torque to around 15% of the original speed. The difference in efficiency between worm gear and helical gear is about half an hour!

Methods of manufacturing worm shafts

Several methods of manufacturing worm shafts are available in the market. Single-pointed lathe tools or end mills are the most popular methods for manufacturing worms. These tools are capable of producing worms with different pressure angles depending on their diameter, the depth of thread, and the grinding wheel’s diameter. The diagram below shows how different pressure angles influence the profile of worms manufactured using different cutting tools.
The method for making worm shafts involves the process of establishing the proper outer diameter of a common worm shaft blank. This may include considering the number of reduction ratios in a family, the distance between the worm shaft and the gear set center, as well as the torques involved. These processes are also referred to as ‘thread assembly’. Each process can be further refined if the desired axial pitch can be achieved.
The axial pitch of a worm must match the circular pitch of the larger gear. This is called the pitch. The pitch diameter and axial pitch must be equal. Worms can be left-handed or right-handed. The lead, which refers to the distance a point on the thread travels during 1 revolution of the worm, is defined by its angle of tangent to the helix on the pitch of the cylinder.
Worm shafts are commonly manufactured using a worm gear. Worm gears can be used in different applications because they offer fine adjustment and high gear reduction. They can be made in both standard sizes and assisted systems. Worm shaft manufacturers can be found online. Alternatively, you can contact a manufacturer directly to get your worm gears manufactured. The process will take only a few minutes. If you are looking for a manufacturer of worm gears, you can browse a directory.
Worm gears are made with hardened metal. The worm wheel and gear are yellow in color. A compounded oil with rust and oxidation inhibitors is also used to make worm gears. These oils adhere to the shaft walls and make a protective barrier between the surfaces. If the compounded oil is applied correctly, the worm gear will reduce the noise in a motor, resulting in a smoother performance.
worm shaft

applications for worm gear reducers

Worm gears are widely used in power transmission applications, providing a compact, high reduction, low-speed drive. To determine the torque ratio of worm gears, a numerical model was developed that makes use of the equation of displacement compatibility and the influence coefficient method, which provides fast computing. The numerical model also incorporates bending deflections of the gear surfaces and the mating surfaces. It is based on the Boussinesq theory, which calculates local contact deformations.
Worm gears can be designed to be right or left-handed, and the worm can turn either clockwise or counter-clockwise. An internal helical gear requires the same hand to operate both parts. In contrast, an external helical gear must be operated by the opposite hand. The same principle applies to worm gears in other applications. The torque and power transferred can be large, but worm gears are able to cope with large reductions in both directions.
Worm gears are extremely useful in industrial machinery designs. They reduce noise levels, save space, and give machines extra precision and fast-stopping capabilities. Worm gears are also available in compact versions, making them ideal for hoisting applications. This type of gear reducer is used in industrial settings where space is an issue. Its smaller size and less noise makes it ideal for applications that need the machine to stop quickly.
A double-throated worm gear offers the highest load capacity while still remaining compact. The double-throated version features concave teeth on both worm and gear, doubling the contact area between them. Worm gears are also useful for low to moderate-horsepower applications, and their high ratios, high output torque, and significant speed reduction make them a desirable choice for many applications. Worm gears are also quieter than other types of gears, reducing the noise and vibrations that they cause.
Worm gears have numerous advantages over other types of gears. They have high levels of conformity and can be classified as a screw pair within a lower-pair gear family. Worm gears are also known to have a high degree of relative sliding. Worm gears are often made of hardened steel or phosphor-bronze, which provides good surface finish and rigid positioning. Worm gears are lubricated with special lubricants that contain surface-active additives. Worm gear lubrication is a mixed lubrication process and causes mild wear and tear.

China supplier Carbon Steel Fiber Laser Marking Machine   near me manufacturer China supplier Carbon Steel Fiber Laser Marking Machine   near me manufacturer

China wholesaler CNC Plasma Cutter / Square Round Tube Pipe Steel CNC Flame Plasma Cutting Machine near me shop

Product Description

cnc plasma cutter / square round tube pipe steel cnc flame plasma cutting machine

Product Description

Features of square pipe plasma cutting machine

 

1.This machine is mainly used for metal Square&Round tube cutting. LCD operate panel can prompt kinds of operating ways which makes operation more convenient and simple, which can cut metal into different complex shapes.

2.Machine frame with welded lathe bed of thick-wall profiled steel, more solid and stable.

3.High precision ZheJiang square guid rail and high efficiency Rack gear which surface is carburizing and quenching.

4.Lower noise, stable and accurate coordinates movement.

5.Driving system is Servo system to make sure whole machine can run with
smoothly in a wider speed range, short acceleration time

6.CZPT height controller can adjust the best cutting distance automatically, to confirm working piece high precision cutting.

Application

Applicable shape:
* Intersection cylindrical hole cutting of different directions and diameters on main pipe for vertical
*Intersection between branch pipe and main pipe
*Intersection cylindrical end cutting on brand pipe for vertical intersection between branch pipe and main pipe
*Bevel cutting on pipe end
*Welding elbow cutting on pipe
*Branch pipe intersection end cutting connected with ring main pipe
*Square hole and branch hole cutting on pipe
*Cutting off of pipes

Applicable field:

Applies in cars, motorcycles, pressure vessels, chemical machinery, nuclear industry, general machinery, engineering machinery, steel structure, shipbuilding and other industries

Product Parameters

Specification of square pipe plasma cutting machine

No. Model CA-6000
1 Working length 6000mm (Can be customized)
2 Pipe max profile 200mm diameter (Can be customized)
3 Processing Material Square/ Circular/Rectangular pipe
4 Cutting method Plasma
5 Max travel speed 0-50000mm/min
6 Cutting speed 0-10000 mm/min
7 Running accuracy ≤0.1mm
8 Cutting thickness According to the power supply( 0-200mm)
9 Cutting gas Air
10 Gas pressure 0.4-0.8Mpa for normal plasma power
11 Drive system Dual drive
12 Motor and driver Leashine 758 servo motor
13 X, Y axis High Quality Rack & Pinion and ZheJiang linear rail
14 Power Supply LGK or Hypertherm(any other brand also is ok)
15 Voltage  Machine: single phase 220v 50hz/60hz
16 Arc type Untouched Type
17 THC FangLing CZPT height controller
18 Working Materials Stainless steel/Iron, Aluminum, Galvanized , Titanium

Detailed Photos

01.Professional FanLing 430 control system with LCD screen and original TubeMaster software support square pipes,round pipes,H shape U shape cutting etc…Built-in auto THC controller can adjust CZPT height automatically.

02.Dual drive with front and rear 4 jaws chuck to support pipes stably.

03.Xihu (West Lake) Dis. LGK and USA Hypertherm plasma source optional ,different power were applied for different cutting thickness.

04.Heavy machine frame duty ensure the stable performance for thick and long pipes processing,with dust proof on X,Y,Z axis.

05.Upgraded Pneumatic 4 Jaw chuck optional

Packaging & Shipping

To better ensure the safety of your machine, professional, environmentally friendly, convenient, and efficient packaging services will be provided. Save space as much aspossible for container loading.

1) Foam and wrapping film on the surface of the machine inside. Rain-proof, Dustproof.
2) Standard export plywood case. Upwards, moistureproof shipping marks. Safety guaranteed.
3) Fumigation-free
4) With shipping mark if you like
5) Outside: Marked packing size, model, weight, and other information

After Sales Service

CAMEL CNC provides 3 types of After-Sales service
Hot-line support,Email-support,and On-Site Machine installation
 

You could choose any type for your convenience details as below:
 

1 After receiving machine clients could install in CZPT of video and instructions provided

2 lf you have any question during installation or operation,we will assist via Skype, Whatsapp, Teamviewer or other tools online until clients can operate machine skilfully

3 If client needs,we could provide sample drawings for testing

4 lf clients need on-site installation and training we will charge $200 per day as well as round train costs for sending technician and local Accommodation or you could contact your sales manager for discussing details

5 Our company will contact clients on machine working status feedback new requirements or good suggestions regularly and revert back to our company functional departments to improve our machines or service

 

Company Profile

HangZhou CZPT CNC Machinery Co., Ltd.

HangZhou CZPT CNC Machinery Co., Ltd. locates in HangZhou City, ZheJiang Province where is the hometown of CNC machines, our company is an enterprise specializing in marketing and R&D of laser cutting machine, CNC router, plasma cutting machine, panel furniture production line, CNC wood lathe etc, especially on fiber laser cutting machine which used for metal industry, at present we have developed 10,000w, 20,000w, 30,000w big power for thick metal cutting, it with stable and rapid cutting performance which already got a leading position in the laser cutting machine industry.

Our people includes professional sales personnel, technical engineers, after-sales service personnel etc. our transport scope has completed air ,land and sea transport chain. Adhering to a professional, serious and responsible attitude, we insist on “only build superior machines”. Now CZPT CNC machines have obtained C E certification and S G S organization on-site inspection. Committing to providing customers with high quality products, competitive prices and excellent services.

 

For years’ development, our efforts bring us stable customers from home and abroad. Our machines have exported to Europe, Africa, Mid east, America, Oceania and Southeast Asia, etc. With superior performance to price ratio, high quality and perfect after-sales service, now our production facilities occupies China’s forefront in development and expansion and will unceasingly develop and innovate with our full enthusiasm, to carry forward our brand and offer better products for our users.

 

FAQ

Q1: How to choose a suitable machine?
You can tell us the working piece material, size, and the request of machine function. We can recommend the most suitable machine according to our experience.

Q2: This is the first time I buy the machine, is it easy to operate?
We can provide the operation manual or video for guiding. If it is hard for you learning, we can also help you by “Team viewer”online, with telephone or Skype explain.

Q3: Can you customize the machine for me?
Yes, we provide customized solution, but considering the cost, we will recommend the standard configuration to you first.

Q4: What is the guarantee? In case the machine break down?
The machine has 1 year guarantee, fail parts will be replaced for free if the machine under “normal operation”.

Q5: How about the documents after shipment?
We will send all the documents by air after shipment. Including packing list, commercial invoice, B/L, and other certificates
required by clients.

Q6: Delivery time?
For standard machine, it would be 7-10 working days; for non-standard machine, it would be 20 – 30 working days.

Q7: How is the payment?
Normally we accept T/T or L/C, if you like other terms, tell us in advance.

Q8: Do you arrange the shipment for me?
For FOB or CIF price, we will arrange shipment for you, for EXW price, you should arrange the shipment by yourself.

Q9: How is the packing?
Step1: water proof wrapping film with foam protection in each corner.
Step2: Solid seaworthy wood box package with steel belt.
Step3: Save space as much as possible for container loading.

Axle Spindle Types and Installation

Are you looking for a new axle spindle for your vehicle? If so, you’ve come to the right place. Learn more about their types, functions, and installation. After reading this article, you’ll be well on your way to finding your new axle spindle. Axle spindles are essential to your vehicle. There are several types and each has unique characteristics. Here’s how to choose the best 1 for your car.

Dimensions

Axle spindle dimensions are crucial for safe wheel support. This component experiences significant stress and load during bearing mounting and must provide sufficient strength. The axle spindle can be hot-forged or shaped to include an integral shoulder. The shape of the bearing stop region must be abruptly transitioned from a straight to a curved configuration. Dimensions of axle spindle vary with different materials, manufacturing techniques, and applications.
The bearing surfaces of the axle spindle are 1.376 inches across, while the bearing spacer is 1.061 inch across. The axle spindle is 1.376 inches long and includes a cotter pin and nut. Typical axle spindle dimensions are listed below. Some axles may have additional components to reduce their weight, while others may not have any. The number of axles and bearings is also important to consider when determining the dimensions of the axle.
The outside shape of the axle spindle 40 is similar to that of the prior art spindle 10. The outer wheel bearing region 44 is cylindrical with a diameter D 1 and an inner wheel bearing region 46. An axially-separating transition region 48 separates the inner bearing region 46 from the outer wheel bearing region 44. It is important to note that the internal diameter is generally slightly larger than the outer wheel bearing region 46.
Axle spindles can be integrally formed or welded to the housing or central beam. They can also be designed differently depending on the intended function. For example, the trailer axle spindle may have a circular or rectangular cross section. Once again, axle spindles are important for safety and longevity, so it is important to know their dimensions. You can also check online for the dimensions of axle spindles.
Driveshaft

Function

Axle spindles are crucial components of a vehicle’s suspension system. They enable a vehicle to move forward, turn, brake, and accelerate. The axle also supports the wheel bearings. In addition to supporting the wheel hub, the axle spindle connects the arms of each wheel to the chassis. This piece is also known as a steering knuckle. The axle spindle’s job is to provide sufficient strength to support the axle.
The functional elements of an axle spindle are cylindrical and have a transition region and an outer surface with an irregular pattern. They have a first and a second diameter, and are shaped to form the spindle’s beam portion and spindle region. The transition region forms a pivotal connection between the axle and the suspension. It also provides the connection between the axle and the trailer. It allows a vehicle to rotate without causing excessive vibrations.
Axle spindles can be circular in structure and are similar to those of the prior art. They support wheel hub configurations. The first end of a spindle is threaded, while the second end is open. The outer wheel bearing region has an outer surface with a diameter D1, while the inner wheel bearing region 46 has a cylindrical outer surface with a diameter D2. The transition region separates the spindle from the rest of the axle.
The spindle nut retains the wheel hub on the spindle, whereas the spindle nut holds the hub assembly in place. A spindle nut retains the wheel on the spindle. A hub cap protects the locking nut assembly and lubrication area. A hub cap is also a common component of the axle. The hub cap also provides a protective shield for the spindle nut.
Steering axle spindles do not extend to the right of the oil seal. They extend from the steering kunckle, which is pivotally joined to the steering axle beam. Despite the differences in bearing seals, wheel hub mounting means, and brake assemblies, the basic spindle configuration is the same. A spindle consists of 2 axially separated bearing regions, 1 with a larger diameter than the other, with a bearing stop adjacent to the inner bearing region.
Driveshaft

Types

The axle is the basic unit of an automobile, and it includes several components. Among these are bearings, axle housings, and wheel hubs. Bearings and axle housings take on all of the radial loads placed on them during operation. As a result, they are necessary to ensure that a vehicle is able to function at its optimum level. But if you’re not sure what these components are, they can make all the difference in your ride.
Axle type depends on a number of factors, including the amount of force produced. In some cases, the vehicle already has pre-designed axles that come in standard formats, but in other cases, a customer can order a custom-made axle for the specific needs of his vehicle. Customized axles give the vehicle operator greater control over the speed and torque of the wheels. To choose the correct axle type for your vehicle, it’s helpful to know the measurements of the axle.
Axle gear sets and lubrication passages are also different. Reverse-cut gears can’t be used in place of standard cut gears, and vice-versa. The 2 types of axle are compatible, but the spline count of the differential case must match that of the axle. It’s important to remember that a different type of axle may work with a different type of machine tool.
Different axle spindle materials have their own advantages and disadvantages. Some are more durable than others, depending on their load capacity. Disc brake hubs and axle spindles are similar to the non-braking ones, but include a rotor and a caliper yoke. The yoke design on the rotor or caliper spindle is specific for each rotor.
Bearing-type axles are the most durable. They transfer the weight of the vehicle to the axle casing. The axle housing is retained by a flange bolted to the hub, and the axle bearings are secured on the spindle by a large nut. Alternatively, axles with bearings are supported solely on the axle spindle and don’t require a hub. Floating axles are typically better for long-term operation, but may be a limited choice for vehicles.
Driveshaft

Installation

Axle spindle installation involves tightening the axle spindle nut to retain the spacer and bearing cones in position. When properly tightened, the axle spindle nut provides the clamp force required to compress the bearing spacer and bearing cone. Preloading is an important part of axle spindle installation because it optimizes bearing life by limiting the tolerance range of end play. Here are some tips on axle spindle installation.
To start the process, you should remove the axle spindle from the vehicle. If the old spindle is not a bolt-on type, a technician will need to cut the weld that holds the axle spindle in place. Then, he or she would need to thread the new spindle back into place. The axle tube must be threaded to accept the new spindle. Once the axle spindle is properly installed, the technician will need to tighten it to the specified torque.
Once the axle spindle is installed, the technician will continue tightening the nut assembly. To ensure a tight grip, the technician will rotate the outer washer while adjusting the torque level on the axle spindle nut. If the nut is not correctly torqued, it may loosen the axle spindle. In addition, improper torque can cause excessive inboard pressure on the outer nut, which can result in over or under-compression of the bearing cone.
The second axle spindle includes an inboard bearing 54 and an outboard bearing 56. The inboard bearing has an inboard surface that abuts the shoulder 26 of the axle spindle. The outboard bearing 57 is mounted on the axle spindle near its outboard end. A bearing spacer 58 is positioned between the inboard and outboard bearings. The spacer and bearing cone group comprises the bearing cones 54 and 56.
Proper alignment of the new spindle is essential for a secure fit. Taking your trailer to a licensed repair facility for a trailer spindle installation is a good idea, as a poorly installed axle can result in improper wheel tracking and premature tire wear. A licensed trailer repair facility can do this for you without much difficulty. This way, you won’t waste your time or frustration on a DIY trailer axle replacement.

China wholesaler CNC Plasma Cutter / Square Round Tube Pipe Steel CNC Flame Plasma Cutting Machine   near me shop China wholesaler CNC Plasma Cutter / Square Round Tube Pipe Steel CNC Flame Plasma Cutting Machine   near me shop

China factory Aluminum Steel Cut to Length Line Coil Leveling Cutting to Length Machine near me factory

Product Description

           Decoiler+Leveling+Cutting+Conveyor+Stacker Machine

 

Customer requirements:

1.Galvanized steel thickness:0.25-3mm

2.Material width:1250mm

  3.Machine’s color:Green

 

Material:GI, PPGI and others. But if you want to cutting stainless steel, please tell us and then we will change the cutting blade material for
your reference.

 

WORK FLOW

DECOILER—FEEDING—LEVELING—SHEARING— CONVEYOR BELT— AUTOMATIC STACKER TABLE

 

Item Name Unit Quantity
1 5 tons hydraulic decoiler with loading car set 1
2 Leveling and cutting machine set 1
3 Conveyor set 1
4 Control system set 1
5 Hydraulic station set 1
6 4m auto stacker set 1

 

 

1. 5 tons hydraulic decoiler with car and upender

Coil loading car: (Regarding the loading car, the min height that can be lowered is 540mm, and the max

height is 925mm. If you have special requirements, please let us know in advance.)

1) The car can move levelly and vertically, which is convenient for putting the steel coils into the de-coiler.

2) It is driven vertically by hydraulic cylinder with 4 CZPT pillars

3) The level movement is driven by motor

4) Driving motor power: 0.75 kw, max capacity is 5 Ton. Function: It is used to lift up and down, move forward and back to make it easy to
load the coils on decoiler. Hydraulic controls lifting, motor drives moving. The car

is controlled on the auxiliary control panel. Its moving speed is 6-7 m/min. When coils on decoiler, car will

return back to the start position. It can also carry back the unfinished coils from decoiler.

 

Auto decoiler:

1) Supporting the coils and doing uncoiling. The capacity is 5 Tons(max). Equipped with the brake system

2) It adopts the hydraulic oil cylinder to make the decoiler expandable and fit to the inner diameter of coils. It is equipped with the cantilever.

3) Motor drive the coils running and can do forward and reverse running as well as do the decoiling with tension. Max coil width: 1250 mm

Feeding speed: 0-40 m/min (adjustable)

Driving motor power: 5.5 kw

Hydraulic motor power: 5.5 kw

4) Structure: welding by the steel plates and profiled bar. Inner diameter 550-650mm (Remarks: The adjustment range of the max inner diameter
and the min inner diameter is within 100mm, and the adjustable range can be increased through the gasket.)

Part 2: Leveling and cutting 
 Feeding width Adjustable,max 1250mm
 Shaft material 45 # steel with tempered
 Shaft diameter 70mm
 Leveling roller 13 rollers,up 5 down 6 with 1 pair of feeding roller
 Leveling type 4-HI level,the precision is higher than normal one
 Motor power 7.5kw
 Speed About 0-20m/min,speed is adjustable
 Roller space adjustment Automatically adjusted by motor
 Cutting type Hydraulic cutting
 Cutting blade material Cr 12 with quenched treatment
 Cutting length Adjustable,controlled by PLC

 

Part3: Control systerm
 Control system  PLC
 PLC Brand  Siemens
 Screen  Siemens touch screen
 Encoder  Omron
 Converter  Delta from ZheJiang
 Function  Control the speed,cutting length and quantity
 Remote control With the remote control for easier operation.

Part 4: Automatic Conveyor belt

Part 5, Automatic Stacker

 

Max Length of the sheet :4000mm

Max Width of the sheet : 1250mm

Table is moveable with the wheels and have lock

Table capacity: 1000 kgs

Company Profile


FAQ:

1.How to get a quotation of coil slitting line?

If you want to order this machine, kindly contact me by Email or Phone, please tell us your requiremnts,

1.material of the coil:

2.thickness of the coil:

3.width of the coil:

4.Maximum coil weight:

5.maxium slitting strips quantity:

6.the minimum width of the slitting strip:

7.the maxmum width of the slitting strip:

8.Speed :

Then we can offer you the most proper solution for your machine and will send you quotations with specifications and price.

2. Terms of payment:
30% T/T, Balance to be paid before shipping after inspection. We also accept the payment L/C, O/A , D/P.

3. What is your after-sale service?
coil slitting line warranty period is 24 months,if the broken parts can’t be repaired,we can send new to replace for free,but you need to pay the express cost.we supply the technical support for the whole life of the equipment.

4. How to visit your company?

Kindly tell us your visting time, we can pick up you AT the stations. and help you check the airport ticket and train ticket.

Our city is near ZheJiang , it is about 54 minutes by high speed train, it is short time and convenient for you to by train to our city from ZheJiang , so we suggest you come by high speed train.

Worm Gear Motors

Worm gear motors are often preferred for quieter operation because of the smooth sliding motion of the worm shaft. Unlike gear motors with teeth, which may click as the worm turns, worm gear motors can be installed in a quiet area. In this article, we will talk about the CZPT whirling process and the various types of worms available. We’ll also discuss the benefits of worm gear motors and worm wheel.
worm shaft

worm gear

In the case of a worm gear, the axial pitch of the ring pinion of the corresponding revolving worm is equal to the circular pitch of the mating revolving pinion of the worm gear. A worm with 1 start is known as a worm with a lead. This leads to a smaller worm wheel. Worms can work in tight spaces because of their small profile.
Generally, a worm gear has high efficiency, but there are a few disadvantages. Worm gears are not recommended for high-heat applications because of their high level of rubbing. A full-fluid lubricant film and the low wear level of the gear reduce friction and wear. Worm gears also have a lower wear rate than a standard gear. The worm shaft and worm gear is also more efficient than a standard gear.
The worm gear shaft is cradled within a self-aligning bearing block that is attached to the gearbox casing. The eccentric housing has radial bearings on both ends, enabling it to engage with the worm gear wheel. The drive is transferred to the worm gear shaft through bevel gears 13A, 1 fixed at the ends of the worm gear shaft and the other in the center of the cross-shaft.

worm wheel

In a worm gearbox, the pinion or worm gear is centered between a geared cylinder and a worm shaft. The worm gear shaft is supported at either end by a radial thrust bearing. A gearbox’s cross-shaft is fixed to a suitable drive means and pivotally attached to the worm wheel. The input drive is transferred to the worm gear shaft 10 through bevel gears 13A, 1 of which is fixed to the end of the worm gear shaft and the other at the centre of the cross-shaft.
Worms and worm wheels are available in several materials. The worm wheel is made of bronze alloy, aluminum, or steel. Aluminum bronze worm wheels are a good choice for high-speed applications. Cast iron worm wheels are cheap and suitable for light loads. MC nylon worm wheels are highly wear-resistant and machinable. Aluminum bronze worm wheels are available and are good for applications with severe wear conditions.
When designing a worm wheel, it is vital to determine the correct lubricant for the worm shaft and a corresponding worm wheel. A suitable lubricant should have a kinematic viscosity of 300 mm2/s and be used for worm wheel sleeve bearings. The worm wheel and worm shaft should be properly lubricated to ensure their longevity.

Multi-start worms

A multi-start worm gear screw jack combines the benefits of multiple starts with linear output speeds. The multi-start worm shaft reduces the effects of single start worms and large ratio gears. Both types of worm gears have a reversible worm that can be reversed or stopped by hand, depending on the application. The worm gear’s self-locking ability depends on the lead angle, pressure angle, and friction coefficient.
A single-start worm has a single thread running the length of its shaft. The worm advances 1 tooth per revolution. A multi-start worm has multiple threads in each of its threads. The gear reduction on a multi-start worm is equal to the number of teeth on the gear minus the number of starts on the worm shaft. In general, a multi-start worm has 2 or 3 threads.
Worm gears can be quieter than other types of gears because the worm shaft glides rather than clicking. This makes them an excellent choice for applications where noise is a concern. Worm gears can be made of softer material, making them more noise-tolerant. In addition, they can withstand shock loads. Compared to gears with toothed teeth, worm gears have a lower noise and vibration rate.
worm shaft

CZPT whirling process

The CZPT whirling process for worm shafts raises the bar for precision gear machining in small to medium production volumes. The CZPT whirling process reduces thread rolling, increases worm quality, and offers reduced cycle times. The CZPT LWN-90 whirling machine features a steel bed, programmable force tailstock, and five-axis interpolation for increased accuracy and quality.
Its 4,000-rpm, 5-kW whirling spindle produces worms and various types of screws. Its outer diameters are up to 2.5 inches, while its length is up to 20 inches. Its dry-cutting process uses a vortex tube to deliver chilled compressed air to the cutting point. Oil is also added to the mixture. The worm shafts produced are free of undercuts, reducing the amount of machining required.
Induction hardening is a process that takes advantage of the whirling process. The induction hardening process utilizes alternating current (AC) to cause eddy currents in metallic objects. The higher the frequency, the higher the surface temperature. The electrical frequency is monitored through sensors to prevent overheating. Induction heating is programmable so that only certain parts of the worm shaft will harden.

Common tangent at an arbitrary point on both surfaces of the worm wheel

A worm gear consists of 2 helical segments with a helix angle equal to 90 degrees. This shape allows the worm to rotate with more than 1 tooth per rotation. A worm’s helix angle is usually close to 90 degrees and the body length is fairly long in the axial direction. A worm gear with a lead angle g has similar properties as a screw gear with a helix angle of 90 degrees.
The axial cross section of a worm gear is not conventionally trapezoidal. Instead, the linear part of the oblique side is replaced by cycloid curves. These curves have a common tangent near the pitch line. The worm wheel is then formed by gear cutting, resulting in a gear with 2 meshing surfaces. This worm gear can rotate at high speeds and still operate quietly.
A worm wheel with a cycloid pitch is a more efficient worm gear. It reduces friction between the worm and the gear, resulting in greater durability, improved operating efficiency, and reduced noise. This pitch line also helps the worm wheel engage more evenly and smoothly. Moreover, it prevents interference with their appearance. It also makes worm wheel and gear engagement smoother.
worm shaft

Calculation of worm shaft deflection

There are several methods for calculating worm shaft deflection, and each method has its own set of disadvantages. These commonly used methods provide good approximations but are inadequate for determining the actual worm shaft deflection. For example, these methods do not account for the geometric modifications to the worm, such as its helical winding of teeth. Furthermore, they overestimate the stiffening effect of the gearing. Hence, efficient thin worm shaft designs require other approaches.
Fortunately, several methods exist to determine the maximum worm shaft deflection. These methods use the finite element method, and include boundary conditions and parameter calculations. Here, we look at a couple of methods. The first method, DIN 3996, calculates the maximum worm shaft deflection based on the test results, while the second one, AGMA 6022, uses the root diameter of the worm as the equivalent bending diameter.
The second method focuses on the basic parameters of worm gearing. We’ll take a closer look at each. We’ll examine worm gearing teeth and the geometric factors that influence them. Commonly, the range of worm gearing teeth is 1 to four, but it can be as large as twelve. Choosing the teeth should depend on optimization requirements, including efficiency and weight. For example, if a worm gearing needs to be smaller than the previous model, then a small number of teeth will suffice.

China factory Aluminum Steel Cut to Length Line Coil Leveling Cutting to Length Machine   near me factory China factory Aluminum Steel Cut to Length Line Coil Leveling Cutting to Length Machine   near me factory

China Best Sales Fiber Laser Cutting Machine 5mm Stainless Steel Laser Cutting Machine with Good quality

Product Description

Fiber Laser Cutting Machine 5mm Stainless Steel Laser Cutting Machine

RJ Fiber Laser Cutting Machine is equipped with ZheJiang industrial level HIWIN rail and YYC rack, Japanese servo motors and flange output planetary reducer, guaranteeing the machine with robust performance and long lifetime more than 10 years.

 

Fiber Laser Cutting Machine 5mm Stainless Steel Laser Cutting Machine
Model RJ-3015E
Working Size 3050*1530mm
Laser Power 1000W/2000W/3000W/4000W/6000W
Laser Type Standard Raycus(Optional Imported Optical Fiber Laser Generator)
Laser Wavelength 1070±10nm
Cutting Thickness 0-20mm
Max. Cutting Speed 70m/min
Positioning Accuracy ±0.03
Repeat Positioning Accuracy ±0.03
Max. Acceleration 1.0G
Driving System Japan CZPT Servo motor and drivers
Cooling System water cooling
Working Voltage AC220V/110V±10% 50Hz/60Hz AC380V 3PH 50Hz/60Hz
The working area and laser power can be customized according to customer’s needs.

 

Fiber Laser Cutting Machine applied in sheet metal processing, die-cutting, electronic, electrical appliance, aviation, mechanical, elevator, cars, steamer, cutting tool, subway accessories, petroleum machinery, food machinery, craft gifts, tools processing, decoration, advertisement, metal external processing and other manufacturers.
High Productivity Metal Fiber Laser Cutting Machine specially used for cutting 0.5-30mm carbon steel sheets(pipes), 0.5-15mm stainless steel sheets, galvanized steel(pipes), electrolytic zinc-coated steel sheet(pipes), silicon steel (pipes) and other kinds of thin metal sheets and pipes. Range of pipe diameters: 20-220mm.

HangZhou Ruijie Fiber Laser Cutting Machine adopts international advanced 500w/1000w/2000w/3000w power fiber laser from IPG, or Raycus from China, imported high precision ball screw, linear CZPT way and other high efficient and high precise drive mechanism.

The precise CNC fiber laser cutting machine integrates imported servo motor with advanced CNC system, is high new tech product with a collection made of laser cutting, precise machinery, CNC technology, and other subjects. It is applied for cutting and shaping of carton steel plate, stainless steel plate, aluminum plate and other metal materials. With high speed, high precision, high efficiency, high cost performance and other features, it’s the first choice in cutting machines for industries metal processing.

Relaying on cooperative R&D and promoting high-tech, high quality products, Ruijie has been committed to researching and manufacturing CNC products in the filed of laser, advertising and wood router. With the striving spirit of determination and sharing, and the service aim of prestige first, service first, Ruijie is developing steadily and sustainably.

Packaging: Laser Cutting Machine will be packed by 2 layers. First the plastic air bubble wrap the machine, product the Laser Cutting Machine from be scratched or other unexpected damage, the wrapped product will be packed in plywood case.

Shipping: ZheJiang , HangZhou, ZheJiang , HangZhou, HangZhou, etc. We accept land, air, sea transport and international multimodal transport.

We have 20-years professional focused on laser cutting machine and service more than 150 countries and areas. As the sale in China, our products exports around the world including Southeast, Middle East, Africa, European and U.S.A.

1. 24 months quality guaranty, the machine with main parts(excluding the consumables) shall be changed free of charge, if there is any problem during the warranty period.
2. Lifetime maintenance free of charge.
3. Free training course at our plant.
4. We will provide the consumable parts at an agency price when you need replacement.
5. 24 hours on line service each day, free technical support.
6. Machine has been adjusted before delivery.
7. Our staff can be sent to your company to install or adjust if necessary.

FAQ:
Q1: How long is the warranty time of the machine?
A1: 2 years.

Q2: What is the delivery time of the machine?
A2: 17 working days after receive the deposit.

Q3: Does the company provide OEM services?
A3: Yes, our company provide OEM services and we have 20 years experienced.

Q4: Do you accept an exclusive national sales agent?
A4: We accept and we are also looking for distributors around the world.

Q5: How to provide after sales service?
A5: When you buy our machine, we can train you free in our factory or we can send engineer to your factory give you a 7 days training, so you can quickly put the machine into service. The training included: to Learn the basic operation engraving machine, to understand the use of various functions of carving machine, to maintain normal running of the engraving machine operation. We can provide 1 year free on-site maintenance service and long-term maintenance service.

Q6: How to transport and how long is the transportation time?
A6: CZPT Shipping, Air Shipping, Courier Shipping.

 

Screw Shaft Features Explained

When choosing the screw shaft for your application, you should consider the features of the screws: threads, lead, pitch, helix angle, and more. You may be wondering what these features mean and how they affect the screw’s performance. This article explains the differences between these factors. The following are the features that affect the performance of screws and their properties. You can use these to make an informed decision and purchase the right screw. You can learn more about these features by reading the following articles.

Threads

The major diameter of a screw thread is the larger of the 2 extreme diameters. The major diameter of a screw is also known as the outside diameter. This dimension can’t be directly measured, but can be determined by measuring the distance between adjacent sides of the thread. In addition, the mean area of a screw thread is known as the pitch. The diameter of the thread and pitch line are directly proportional to the overall size of the screw.
The threads are classified by the diameter and pitch. The major diameter of a screw shaft has the largest number of threads; the smaller diameter is called the minor diameter. The thread angle, also known as the helix angle, is measured perpendicular to the axis of the screw. The major diameter is the largest part of the screw; the minor diameter is the lower end of the screw. The thread angle is the half distance between the major and minor diameters. The minor diameter is the outer surface of the screw, while the top surface corresponds to the major diameter.
The pitch is measured at the crest of a thread. In other words, a 16-pitch thread has a diameter of 1 sixteenth of the screw shaft’s diameter. The actual diameter is 0.03125 inches. Moreover, a large number of manufacturers use this measurement to determine the thread pitch. The pitch diameter is a critical factor in successful mating of male and female threads. So, when determining the pitch diameter, you need to check the thread pitch plate of a screw.
screwshaft

Lead

In screw shaft applications, a solid, corrosion-resistant material is an important requirement. Lead screws are a robust choice, which ensure shaft direction accuracy. This material is widely used in lathes and measuring instruments. They have black oxide coatings and are suited for environments where rusting is not acceptable. These screws are also relatively inexpensive. Here are some advantages of lead screws. They are highly durable, cost-effective, and offer high reliability.
A lead screw system may have multiple starts, or threads that run parallel to each other. The lead is the distance the nut travels along the shaft during a single revolution. The smaller the lead, the tighter the thread. The lead can also be expressed as the pitch, which is the distance between adjacent thread crests or troughs. A lead screw has a smaller pitch than a nut, and the smaller the lead, the greater its linear speed.
When choosing lead screws, the critical speed is the maximum number of revolutions per minute. This is determined by the minor diameter of the shaft and its length. The critical speed should never be exceeded or the lead will become distorted or cracked. The recommended operational speed is around 80 percent of the evaluated critical speed. Moreover, the lead screw must be properly aligned to avoid excessive vibrations. In addition, the screw pitch must be within the design tolerance of the shaft.

Pitch

The pitch of a screw shaft can be viewed as the distance between the crest of a thread and the surface where the threads meet. In mathematics, the pitch is equivalent to the length of 1 wavelength. The pitch of a screw shaft also relates to the diameter of the threads. In the following, the pitch of a screw is explained. It is important to note that the pitch of a screw is not a metric measurement. In the following, we will define the 2 terms and discuss how they relate to 1 another.
A screw’s pitch is not the same in all countries. The United Kingdom, Canada, and the United States have standardized screw threads according to the UN system. Therefore, there is a need to specify the pitch of a screw shaft when a screw is being manufactured. The standardization of pitch and diameter has also reduced the cost of screw manufacturing. Nevertheless, screw threads are still expensive. The United Kingdom, Canada, and the United States have introduced a system for the calculation of screw pitch.
The pitch of a lead screw is the same as that of a lead screw. The diameter is 0.25 inches and the circumference is 0.79 inches. When calculating the mechanical advantage of a screw, divide the diameter by its pitch. The larger the pitch, the more threads the screw has, increasing its critical speed and stiffness. The pitch of a screw shaft is also proportional to the number of starts in the shaft.

Helix angle

The helix angle of a screw shaft is the angle formed between the circumference of the cylinder and its helix. Both of these angles must be equal to 90 degrees. The larger the lead angle, the smaller the helix angle. Some reference materials refer to angle B as the helix angle. However, the actual angle is derived from calculating the screw geometry. Read on for more information. Listed below are some of the differences between helix angles and lead angles.
High helix screws have a long lead. This length reduces the number of effective turns of the screw. Because of this, fine pitch screws are usually used for small movements. A typical example is a 16-mm x 5-inch screw. Another example of a fine pitch screw is a 12x2mm screw. It is used for small moves. This type of screw has a lower lead angle than a high-helix screw.
A screw’s helix angle refers to the relative angle of the flight of the helix to the plane of the screw axis. While screw helix angles are not often altered from the standard square pitch, they can have an effect on processing. Changing the helix angle is more common in two-stage screws, special mixing screws, and metering screws. When a screw is designed for this function, it should be able to handle the materials it is made of.
screwshaft

Size

The diameter of a screw is its diameter, measured from the head to the shaft. Screw diameters are standardized by the American Society of Mechanical Engineers. The diameters of screws range from 3/50 inches to 16 inches, and more recently, fractions of an inch have been added. However, shaft diameters may vary depending on the job, so it is important to know the right size for the job. The size chart below shows the common sizes for screws.
Screws are generally referred to by their gauge, which is the major diameter. Screws with a major diameter less than a quarter of an inch are usually labeled as #0 to #14 and larger screws are labeled as sizes in fractions of an inch. There are also decimal equivalents of each screw size. These measurements will help you choose the correct size for your project. The screws with the smaller diameters were not tested.
In the previous section, we described the different shaft sizes and their specifications. These screw sizes are usually indicated by fractions of an inch, followed by a number of threads per inch. For example, a ten-inch screw has a shaft size of 2” with a thread pitch of 1/4″, and it has a diameter of 2 inches. This screw is welded to a two-inch Sch. 40 pipe. Alternatively, it can be welded to a 9-inch O.A.L. pipe.
screwshaft

Shape

Screws come in a wide variety of sizes and shapes, from the size of a quarter to the diameter of a U.S. quarter. Screws’ main function is to hold objects together and to translate torque into linear force. The shape of a screw shaft, if it is round, is the primary characteristic used to define its use. The following chart shows how the screw shaft differs from a quarter:
The shape of a screw shaft is determined by 2 features: its major diameter, or distance from the outer edge of the thread on 1 side to the inner smooth surface of the shaft. These are generally 2 to 16 millimeters in diameter. Screw shafts can have either a fully threaded shank or a half-threaded shank, with the latter providing better stability. Regardless of whether the screw shaft is round or domed, it is important to understand the different characteristics of a screw before attempting to install it into a project.
The screw shaft’s diameter is also important to its application. The ball circle diameter refers to the distance between the center of 2 opposite balls in contact with the grooves. The root diameter, on the other hand, refers to the distance between the bottommost grooves of the screw shaft. These are the 2 main measurements that define the screw’s overall size. Pitch and nominal diameter are important measurements for a screw’s performance in a particular application.

Lubrication

In most cases, lubrication of a screw shaft is accomplished with grease. Grease is made up of mineral or synthetic oil, thickening agent, and additives. The thickening agent can be a variety of different substances, including lithium, bentonite, aluminum, and barium complexes. A common classification for lubricating grease is NLGI Grade. While this may not be necessary when specifying the type of grease to use for a particular application, it is a useful qualitative measure.
When selecting a lubricant for a screw shaft, the operating temperature and the speed of the shaft determine the type of oil to use. Too much oil can result in heat buildup, while too little can lead to excessive wear and friction. The proper lubrication of a screw shaft directly affects the temperature rise of a ball screw, and the life of the assembly. To ensure the proper lubrication, follow the guidelines below.
Ideally, a low lubrication level is appropriate for medium-sized feed stuff factories. High lubrication level is appropriate for larger feed stuff factories. However, in low-speed applications, the lubrication level should be sufficiently high to ensure that the screws run freely. This is the only way to reduce friction and ensure the longest life possible. Lubrication of screw shafts is an important consideration for any screw.

China Best Sales Fiber Laser Cutting Machine 5mm Stainless Steel Laser Cutting Machine   with Good qualityChina Best Sales Fiber Laser Cutting Machine 5mm Stainless Steel Laser Cutting Machine   with Good quality